БНБ "БРОКГАУЗ И ЕФРОН" (121188) - Photogallery - Естественные науки - Математика - Технология
|
Сера, химический элементОпределение "Сера, химический элемент" в словаре Брокгауза и ЕфронаСера, химический элемент (Soufre франц., Sulphur или Brimstone англ., Schwefel нем., θετον греч., лат. Sulfur, откуда символ S; атомный вес 32,06 при O=16 [Определен Стасом по составу сернистого серебра Ag 2 S]) — принадлежит к числу важнейших неметаллических элементов. Она встречается в самородном виде и потому издавна известна людям; легко воспламеняемая и сгорающая без остатка, она считалась специальною носительницею горючего начала. Самородная (несоединенная) С. встречается в осадочных породах, в известняке, гипсе, мергеле, иногда очень чистая, в хорошо образованных кристаллах, но обыкновенно смешанная с землистыми массами (см. минер. и техн. ст.); такая С. обязана своим возникновением чаще всего жизнедеятельности бактерий и водорослей с характером бродильных грибков, которые размножаются иной раз в огромном количестве в соленых водоемах и поглощают сероводород — продукт восстановления гипса вследствие бродильных процессов, окисляя его в своем теле в серную кислоту, а большею частью только превращая в свободную С., которая и находится затем внутри этих организмов в виде шариков, как запасной пищевой материал, подобно жиру высших живых существ. О нахождении свободной С. в вулканических местностях — см. Сера, минерал. Соединенная С. встречается чаще всего или в виде сернистых металлов — колчеданы или обманки и блески, или в виде солей серной кислоты (сульфаты), как, напр., гипс — CaSO 4 ∙2Н 2 О, который образует иногда целые горы. С. есть непременная, хотя и малая составная часть белковых веществ, содержится в летучих и обладающих резким запахом растительных маслах, например в летучем масле горчицы, чеснока и проч.; а потому соединения С., именно сульфаты, необходимо должны присутствовать в почвах, способных производить растительность, что и имеет место в действительности.
При обыкновенной температуре С. тверда и известна в нескольких аллотропических видоизменениях; все они после плавления превращаются в подвижную желтую жидкость, которая около 160° густеет и буреет, при 200° делается очень густой — не выливается из перевернутой пробирки — и приобретает темно-бурый цвет; при 400° подвижность снова возвращается. При 448,4° С. кипит — под давлением в 760 мм. Красно-бурый и тяжелый пар С. становится более светлым и приобретает постоянную плотность только при 860° — 1040°, когда, согласно с величиной ее 2, 2 3 (или 32,2 по отношению к водороду), по Девиллю и Троосту, частица С. состоит из двух атомов, S 2. При температуре, близкой к 524°, плотность пара С. такова (Дюма), что частица может быть выражена формулой S 6; новейшие исследования (В. Мейер и Бильтц) не показали, однако, значительного постоянства соответствующей плотности при изменениях температуры, и можно даже думать, что более сложная частица парообразной С. состоит из восьми атомов, так как (Блейхер и Кон, 1900) при малых давлениях и низких температурах пар ее стремится сделаться в 8 раз тяжелее кислорода, частица которого весит 32, след., частица С. в пределе весит 32 x 8 и имеет формулу S 8. Вот температуры, давления и плотности (относит. кислорода), на основании которых сделано приведенное заключение:
Эбуллиоскопический (Бекман) и криоскопический (Гертц) методы дают такую же частичную формулу для растворенной серы [Но Патерно и Назини по понижению температуры замерзания бензольного раствора нашли S 6.]. Видоизменений твердой С. известно не менее шести, кристаллических и аморфных; одни из них растворимы в различных жидкостях, другие нерастворимы. Октаэдрическая С. и призматическая — два важнейшие видоизменения кристаллической С. Кристаллы первой принадлежат к ромбической системе (плоскости октаэдра преобладают, но существуют обыкновенно и иные плоскости), а второй — к одноклиномерной. Температура плавления октаэдрической С. 114°, а призматической 120°; удельный вес их 2,07 и 1,96. Обе модификации растворимы до некоторой степени в спирте, эфире, в эфирных и жирных маслах и хорошо растворимы в сероуглероде и в хлористой сере, из которых С. кристаллизуется в виде октаэдров. Призматическая С. легко может быть получена из расплавленной С., для чего нужно несколько охладить тигель и, пробив сверху твердую поверхность полузастывшей массы, вылить незастывшую серу; на стенках и дне тигля остаются тогда длинные прозрачные призмы бурого цвета. При сохранении они теряют прозрачность и приобретают светло-желтый цвет вследствие того, что при обыкновенной температуре призматическая С. превращается в октаэдрическую; призмы состоят тогда из мелких октаэдрических отдельностей. Такое превращение совершается при выделении тепла (0,64 б. кал. на 32 г С.). Возможен и обратный переход (Жернез) — прозрачные кристаллы октаэдрической С., полученные, напр., из сероуглеродного раствора, мутятся и становятся состоящими из одноклиномерных отдельностей, если их подвергнуть нагреванию не ниже 97,6° и не выше, конечно, 114,5° (темп. плавл.). Вообще при невысоких температурах является устойчивой октаэдрическая форма, при температурах более высоких — одноклиномерная; последняя получается из насыщенного при кипячении бензольного раствора при 75° — 80°, а первая — при 22°. Из аморфных видоизменений интересна пластическая С.; она получается при выливании расплавленной С., когда она снова приобрела подвижность, в холодную воду. Такая С. обладает янтарно-желтым цветом, лишена хрупкости, тягуча, ни в чем не растворима и очень устойчива при хранении, если ее промыть сероуглеродом от некоторой примеси октаэдрической С.; в противном случае она постепенно делается также октаэдрической. Аморфная С., осаждающаяся при действии воздуха на сероводородную воду или кислот на растворы многосернистых металлов — в виде светло-желтого, даже белого, тонкого порошка (lac sulfuris praecipitatum в аптеках) — растворима в сероуглероде. Если насытить водный раствор сернистого газа сероводородом, то получается похожая на молоко жидкость Вакенродера, которая содержит в виде эмульсии капельки жидкой С. и растворенную в воде коллоидальную С. (Дебус); последняя в чистом виде представляет желтую полужидкую массу, напоминающую по своим свойствам растворимую кремневую кислоту. Серный цвет, т. е. тот порошок, который получается при перегонке С. (см. техн. ст.), содержит две модификации аморфной С. — растворимую в сероуглероде и нерастворимую. Пламя С. — синее и дает непрерывный спектр (G. Salet), но когда пары ее находятся в водородном пламени, то центральная часть его дает очень красивый сложный спектр, состоящий из ярких линий в зеленой и синей частях, а также в фиолетовой, где линии сгруппированы в пучки.
В своих соединениях С. является двух-, четырех- и шестивалентной SX 2, SX4, SX6; сообразно с этим существуют три группы соединений — тиосоединения (от греч. θεϊον), сульфиновые и сульфоновые соединения — номенклатура, которая чаще всего применяется в области органической химии. Особенно многочисленны и важны представители первой и последней групп, к которым примыкает еще группа смешанного типа — группа соединений, содержащих одновременно двух- и шестивалентную С. Соединения двухвалентной С. во многом сходны с окислами; они известны как для металлов и водорода, так и для неметаллов. Соединения шести- и четырехвалентной С. аналогичны с соответствующими соединениями селена и теллура. Все это согласуется с положением С. в шестой группе периодической системы элементов; здесь роль типического элемента принадлежит кислороду, а С. есть важнейший сравнительно с селеном и теллуром член менее основной подгруппы, подобно тому как хлор относится к брому и йоду в соответствующей подгруппе седьмой группы. Почти все металлы прямо соединяются с С.; медь и серебро горят в парах ее — взаимодействие напоминает по внешности горение железа в кислороде; смесь порошков железа и С. вступает во взаимодействие от незначительного подогревания и идет затем от слоя к слою при самораскаливании. С водородом С. соединяется далеко не столь энергично, как это имеет место для кислорода, образование же сероуглерода совершается при значительном поглощении тепла. Вообще можно сказать, расположение элементов по сродству к кислороду совсем иное, чем по сродству к С.; но структурные формулы бинарных соединений С., сульфидов, можно, вероятно, во всех случаях считать аналогичными с формулами окислов, т. е. принимать в них двухвалентную С., относя к числу тиосоединений. Сульфиды в отличие от окислов известны довольно сложные — полисульфиды, что находится, конечно, в связи со сложностью частицы свободной С. Кроме сероводорода Н 2 S, известны многосернистые водороды H 2Sn, где n = 2 или 5; кроме сернистого калия K 2 S, известны еще K 2Sn, где n = 2, 3, 4 и 5; искусственно получаемое сернистое железо имеет формулу FeS, a в природе находится железный колчедан (пирит, марказит), состав которого FeS 2, и проч. Аналогичные отношения для кислородных соединений выступят, если вспомнить о перекиси водорода и о перекисях ("истинных", см. Перекись водорода) металлов:
но и частица свободной С. гораздо сложнее, чем частица кислорода. Приведенные структурные формулы напоминают о формулах водородистых соединений углерода, частица которого принимается еще более сложной.
для операции служит Девиллев или Киппов аппарат (см. Лаборатория), как при получении водорода действием серной кисл. на цинк. Так как FeS нередко содержит примесь металлического железа, то Н 2 S получается с примесью водорода, что обычным употреблениям Н 2 S, впрочем, не вредит. Совершенно чистый Н 2 S получается при действии кипящей соляной кислоты на грубоизмельченную сернистую сурьму (природную):
Равномерный ток Н 2 S получается при нагревании смеси парафина с С. (в равных частях), а также, при 60°, из того раствора, который возникает при обработке водой сернистого магния MgS и содержит Mg(SH) 2 (см. ниже). Прямое соединение С. с водородом возможно только при постоянном нагревании, так как теплотный эффект превращения незначителен (он много меньше, чем для аммиака), именно всего +4,5 б. кал. (на грам. частицу). Нагревание, однако, не должно быть очень сильным, ибо тогда Н 2 S разлагается. Н 2 S диссоциирует уже при 400° (Готфейль); при 310° идет, хотя и медленно, только прямая реакция — без следа разложения (Д. П. Коновалов, 1898). Взаимодействие водорода с парами С. облегчается присутствием пористых тел, напр. пемзы. Н 2 S легко воспламеняется и горит в воздухе, превращаясь в воду и сернистый газ; пламя его обладает бледно-синим цветом. Окисление, медленное, Н 2 S совершается на воздухе и в растворе по уравнению: чем пользуются для количественного определения Н 2 S. Но особую важность представляют реакции с растворами солей тяжелых металлов, при чем получаются характерного цвета осадки различных сернистых металлов (общее сульфидов), совершенно нерастворимые в воде, вследствие чего получение их широко утилизируется в химическом анализе. Напр. из раствора медного купороса осаждается черная сернистая медь:
CuSO4 + Н 2 S = CuS + Н 2 SО 4
другие не растворяются — из их соляных растворов Н 2 S осаждает сернистые металлы; третьи, наконец, не растворяются только в некоторых кислотах, как, например, ZnS в уксусной кислоте — тогда взаимодействие сероводорода имеет место с солями только этих кислот, при чем и происходит осаждение сернистого металла. Глядя на приведенные выше уравнения, можно сказать, что Н 2 S, как кислота, вступает в двойное разложение с солями, причем благодаря нерастворимости сернистых металлов (солей Н 2 S) превращение идет до конца. С другой стороны, двухвалентная С. в своих соединениях играет роль двухвалентного кислорода в окислах. Поэтому сернистые металлы являются аналогичными окислам металлов, а сероводород — воде, и след., приведенные примеры можно объяснять и таким образом: вода способна разлагать некоторые соли на кислоты и окиси (или их гидраты), то же делает и Н 2 S по отношению к известным солям, при чем получаются свободные кислоты и сульфиды металлов (или гидросульфиды, иначе сульфгидраты, см.). Напр. вода разлагает хлористые соединения сурьмы, превращая их в кислородные (в гидраты) и выделяя соляную кислоту; то же самое делает и Н 2 S, при чем из раствора осаждается Sb 2S3 или Sb 2S5, смотря по типу взятого для реакции соединения (см. Сурьма). Аналогично относятся соединения олова, мышьяка и проч., причем эти соединения могут быть не только хлористые, но и иные, взаимодействие которых с Н 2 S, однако, облегчается присутствием соляной кислоты. Если пропускать сухой Н 2 S над металлическим калием при нагревании, то совершается следующая реакция (Гей-Люсак):
(к аналогичной реакции вода не способна). При обыкн. темп. KSH представляет белую расплывчатую массу, которая при темно-красном калении плавится и при более высоком нагревании приобретает темно-красную окраску. KSH хорошо растворим в воде со щелочной реакцией. Такой раствор можно приготовить и путем насыщения газообразным Н 2 S раствора едкого кали:
Подвергая кристаллизации такие растворы на холоду, получают (Э. Б. Шёне) из первого КSН∙1/2Н 2 O, неокрашенные прозрачные, ромбоэдры, а из второго — К 2 S∙5Н 2 O, четырехсторонние призмы; первый гидрат теряет воду при 170° — 200°, а второй теряет 3H 2 O уже на холоду в эксикаторе и остальную воду при красном калении в струе водорода. K 2 S, след., не разлагается водой, чего нельзя, по-видимому, сказать о сернистом аммонии (NH 4)2 S. Этот сульфид образуется, когда пропускают смесь Н 2 S с небольшим избытком газообразного аммиака через охлажденный до —18° сосуд; получаются бесцветные, напоминающие о слюде кристаллы, хорошо растворимые в воде, где и происходит некоторое его разложение на гидросульфид и едкий аммоний (Bloxam, 1895):
Если смешивать равные объемы газообразных Н 2 S и NH 3 при обыкн. темп., то аналогичный с неизвестным в свободном виде едким аммонием гидросульфид получается (NH 3 + Н 2S = NH4 SH) в виде фарфоровидной массы. Когда готовят обычным образом раствор сернистого аммония, реактив для осаждения из соляных растворов не осаждаемых сероводородом сернистых металлов, т. е. когда насыщают газообразным H 2 S крепкий водный раствор аммиака, то в растворе возникает смесь (NH 4)2 S и NH 4 SH. Сернистый магний MgS, который получается при нагревании в парах С. металлического магния или при накаливании окиси в парах сероуглерода (Фреми):
2MgS + 2Н 2O = Mg(OH)2 + Mg(SH)2
но на холоду Н 2 S растворяет разболтанную в воде жженую магнезию. Сернистый алюминий Al 2S3, желтоватая плавкая масса, может быть получен или из элементов, или при взаимодействии окиси с углем и С., в обоих случаях при накаливании; водою он разлагается вполне, и никогда не происходит обратной реакции:
Таким образом, сульфиды легких металлов противостоят разлагающему действию воды тем слабее, чем выше тип их — чем ниже основные свойства соответствующих окислов. Сульфиды неметаллов или хотя бы и металлов, но способных играть роль неметаллов, вообще сульфиды высших типов обладают иногда склонностью образовывать кристаллические соединения с сульфидами низших типов, при чем получаются соединения того же атомного состава, как из соответствующих кислородных соединений; а потому аналогия сульфидов с окислами заходит так далеко, что приходится говорить о тиоангидридах, напр. тиосурьмяный ангидрид Sb 2S5 и тиоугольный CS 2 (он же сероуглерод), о тиооснованиях, напр. Na 2 S или K 2 S, и о тиосолях, напр. тиосурьмянокислый натрий Na 3SbS4 и тиоуглекислый натрий Na 2CS З. Приставка mиo- в этих названиях нередко заменяется через сульф- или сульфо-, о чем нельзя не пожалеть, так как словом сульфосоли принято называть в то же время — для краткости — соли сульфоновых кислот (см. ниже), которые совершенно не аналогичны тиокислотам, какова, напр., тиоугольная кислота H 2CS3 (см.). Существуют и промежуточные соединения между сульфидами и окислами, так наз. сероокиси. Газообразная сероокись углерода, или сернистый карбонил, SCO получается (Тан) при пропускании смеси паров С. с окисью углерода через умеренно нагретую трубку или, лучше, при действии разведенной серной кислоты (5 об. на 4 об. воды) на роданистый калий сначала на холоду и затем при слабом подогревании:
Na2S + CS2 = Na2CS3
если вместо КОН взять K 2 S, то в растворе получается только К 2S5, без сeрноватистокислого калия; но продолжительное кипячение, однако, вызывает образование этой соли:
Темный, желто-бурый пятисернистый калий получается при сплавлении K 2 S с избытком С. при 600°, когда лишняя С. улетает в токе углекислого газа (в присутствии воздуха происходило бы и окисление); если температура при сплавлении достигает 800°, то в тигле остается красно-бурый четырехсернистый калий K 2S4; при 900° получается трехсернистый калий K 2S3 (Э. Б. Шёне). Все эти сульфиды могут находиться в серной печени и разными путями были получены в чистом виде и ранее Берцелиусом, который добыл и двусернистый калий K 2S2. Этот сульфид образуется, если спиртовой раствор KSH оставить на воздухе, пока он не начнет мутиться вследствие возникновения кислородсодержащих соединений; окисление кислородом воздуха идет сначала, очевидно, так:
удаляя спирт испарением в отсутствие воздуха, получают твердый K 2S2. Окраска полисульфидов калия тем темнее (от желтовато-красной), чем больше в них С.; из серной печени они могут быть извлечены спиртом. По мнению Спринга и Демарто, это твердые растворы С. в K 2 S — представление, вполне согласующееся с легкою взаимною превращаемостью этих определенных соединений. Полисульфиды существуют и для других металлов — для натрия, кальция; при растворении С. в растворе сернистого аммония, что совершается легко и в значительном количестве, получается желтовато-красный раствор полисульфидов аммония. Полисульфиды металлов относятся аналогично перекисям, т. е. легко отдают часть своей С., если есть с чем ей соединиться; многосернистый аммоний употребляется для растворения, напр., трехсернистых сурьмы и мышьяка, при чем они присоединяют С., переходят в Sb 2S5 и в As 2S5 и превращаются с (NH 4)2 S в тиосоли; для той же цели употребляют растворы многосернистого натрия. Если приливать на холоду к раствору пятисернистого кальция соляной кислоты, то происходит следующая реакция:
CaS5 + 2HCl = CaCl2 + H2S5
Известны бромистая и йодистая С. S2Br2 и S 2J2, а также четырехбромистая, шестийодистая и шестифтористая SBr4, SJ6 и SF 6. Кристаллическая SJ 6 получается при испарении сероуглеродного раствора смеси С. и йода; кристаллы напоминают чистый йод; соединение разлагается при сохранении, йод улетает, а С., сохраняя форму кристаллов йода, остается. Шестифтористая С. недавно открыта Муассаном (1900); она образуется при прямом взаимодействии С. с фтором (С. горит в атмосфере фтора) и представляет бесцветный газ без запаха и вкуса, негорючий. При —55° он превращается в белую кристаллическую, массу, которая кипит несколько выше температуры плавления. Этот газ почти не растворим в воде, даже содержащей едкое кали, и очень мало растворим в спирте. При пропускании электрических искр разлагается только частью; при нагревании в смеси с водородом нисколько не изменяется, но электрические искры вызывают в этом случае образование H 2 S и HF. Натрий, расплавленный в атмосфере SF 6, нисколько не изменяется, и только нагретый до температуры кипения, загорается. С. при темп. плавл. не действует на SF 6, но при более высокой температуре, когда С. испаряется уже, получаются ее низшие фтористые соединения, действующие на стекло, вследствие чего возникает сернистый газ и фтористый кремний. Столь неожиданная прочность этого галоидного соединения интересна тем более, что оно представляет пока единственное соединение, частица которого (плотность SF 6 вполне отвечает формуле) содержит шестивалентный атом С., соединенный с шестью одновалентными атомами. В близком отношении ко всем этим окислам находятся кислородо-водородные соединения С., которые, как и для других неметаллов, обладают характером кислот, тем более что тот же характер очевиден уже и для Н 2 S. Важнейшее из таких соединений есть серная кислота, которая может быть получена путем гидратации серного ангидрида:
SO3 + Н ОН = (HO) 2SO2
|