БНБ "БРОКГАУЗ И ЕФРОН" (121188) - Photogallery - Естественные науки - Математика - Технология
|
ИспарениеОпределение "Испарение" в словаре Брокгауза и ЕфронаИспарение — явление перехода твердых и жидких тел в соответствующее им газообразное состояние — в пары, переход, не сопровождающийся разложением молекул сложных тел на составляющие их атомы (в отличие от диссоциации, см. ниже). Множество разных наблюдений заставляет нас предполагать, что все тела при всех температурах испаряются; большинство твердых тел и многие жидкости (напр. тяжелые масла) испаряются при обыкновенных условиях чрезвычайно слабо и медленно, некоторые же твердые тела (камфара) и многие жидкости испаряются при тех же условиях быстро и сильно; эти последние вещества называют поэтому иногда летучими. И. воды (снега), спирта и других легкоиспаряющихся веществ наблюдается по изменению объема или веса их с течением времени; И. трудноиспаряющихся веществ становится заметным глазу лишь при высоких температурах; на И. этих веществ и при более низких температурах указывает в некоторых случаях запах их (камфара, нафталин, мускус, некоторые металлы). И. состоит в отделении частиц от свободной поверхности тел в соседнюю окружающую среду. Это явление становится сильнее с повышением t° до некоторого предела ее, при котором парообразование начинается во всей массе жидкости; t ° эта называется температурой кипения, само явление — кипением. Температура кипения есть характерная для каждого вещества величина. Если И. происходит в замкнутом пространстве, то вещества, как показывает опыт, испаряются в определенном количестве, после чего И. прекращается. Тогда пар насыщает пространство, в котором он образовался, и называется насыщающим. В этом случае И. прекратится, когда газ, находящийся внутри пространства, получит вследствие И. упругость большую, чем она была раньше. Этот избыток упругости всегда тот же для той же жидкости при той же температуре, независимо от формы и размеров замкнутого сосуда, от природы и давления заключенного в нем газа. Этот избыток упругости измеряется давлением ртутного столба некоторой вышины; если в замкнутом пространстве не было первоначально никакого газа, то высота ртутного столба прямо показывает упругость паров данной жидкости, насыщающих при данной t° пространство. Упругость паров над жидкостью противодействует стремлению частиц отделиться от поверхности ее, и когда пар насытит пространство, то упругость его такова, что как раз равна стремлению частиц к отделению, и тогда И. прекращается. Если упругость паров в окружающем пространстве меньше этой предельной упругости, то пары насыщают пространство и жидкость будет продолжать испаряться, пока не насытит пространство или вся не испарится. Если при этом сосуд с жидкостью находится в незамкнутом пространстве, то соседний с жидкостью слой воздуха насыщается мало-помалу парами, но И. не прекращается, так как пар из этого слоя диффундирует в окружающий воздух или уносится его течениями; таким образом над сосудом с жидкостью устанавливается, при спокойном воздухе, столб пара, упругость которого от предельной (у уровня жидкости) падает по мере удаления от жидкости до нуля (теоретически вывел Стефан, 1882; опытно показал Блазиус, 1884). Столб этот растекается по бокам, пар из него уносится диффузией и течениями, и жидкость мало-помалу вся испаряется. Если уменьшением объема замкнутого сосуда мы сделаем упругость больше предельной, то пары, начиная пересыщать пространство, собираются в жидкие частицы и оседают (конденсируются), соединяясь с жидкостью до тех пор, пока не останется столько пара, что он как раз насыщает пространство при данной температуре. Состояния пара ненасыщающего и перенасыщающего — состояния неустойчивые, стремящиеся перейти при посредстве И. или конденсации в состояние пара, насыщающее пространство. Воздух заключает всегда некоторое количество водяных паров, и относительное количество их определяется понятием о влажности (см.). В сыром помещении, т. е. таком, в котором водяные пары насыщают пространство, вода, выставленная в открытом сосуде, не будет вовсе испаряться, между тем как в сухом воздухе вода будет испаряться, пока его не насытит. Если мы внезапно охладим воздух, то водные пары, насыщавшие его раньше, будут его перенасыщать и осядут в виде росы; наоборот, если мы нагреем воздух насыщенный парами, то возобновим в нем испарение. Стремление к И. растет с t°, причем растет и упругость паров, насыщающих пространство; температура кипения наступает тогда, когда упругость паров достигнет упругости газа, окружающего жидкость. Температура кипения зависит от давления окружающего газа и тем выше, чем больше давление. И. — явление, неразрывно связанное с существованием жидкостей, и потому играет весьма важную роль в природе и в промышленности. Изучение его привело к ряду данных о скорости И. и о явлениях, его сопровождающих, данных весьма противоречивых и до сих пор еще не объединенных и даже не вполне ясных. Скорость И., т. е. время, потребное на И. единицы веса тела (напр. грамма) с единицы поверхности (напр. кв. стм.), зависит: 1) от поверхности жидкости и легкости удаления из нее диффундирующего пара, т. е. от размеров и формы сосуда, в котором находится жидкость; 2) от природы внешней среды и ее движения или покоя; 3) от t ° жидкости; 4) от внешнего давления; 5) от природы жидкости; 6) от природы поверхности, с которой происходит И., и 7) от некоторых других причин, напр. электризации жидкости.
1) Влияние формы и размеров сосуда на И. Влияние это слагается из: а) влияния величины поверхности, b) влияния формы сосуда на легкость удаления паров посредством диффузии. Долго полагали, что количество испарившейся жидкости пропорционально ее поверхности. Дальтон, давший в 1803 г. для количества P испаряющейся в единицу времени жидкости формулу:
где S - поверхность сосуда, F — предельная упругость при данной темпер., f — упругость пара в окружающей среде, H — барометрическое давление, а А — коэффициент, зависящий от природы жидкости, нашел это предположение справедливым для не слишком малых поверхностей. Убеждение в справедливости этого соотношения держалось до последнего времени, хотя уже Рейшауер (1861 г.) и позже Фризиани (1876 г.) показали, что это не так. Из 4-х сосудов Рейшауера, поверхности которых были в отношении 1:2,78:5,50:19,05, испарились количества воды в отношении 1:2,6:4,48:12,66. У Фризиани с двух поверхностей с отношением 1:4 испарились количества в отношении 1:2,73. Позже в 1882 г. Стефан теоретически вывел формулы для скорости И. из круговых и эллиптических сосудов, из которых видно, что И. пропорционально радиусу, а не поверхности сосудов. Формула Стефана:
где K — коэффициент диффузии пара в окружающей среде, а r — радиус сосуда, проверена была им самим и найдена верной для кругов и не слишком растянутых эллипсов; к тому же результату о пропорциональности И. окружности, а не поверхности пришел и Б. И. Срезневский ("Журн. Русск. физико-химического общества", XIV и ХV), исследуя И. капель с помощью эвапориметра Ф. Ф. Петрушевского. В 1885 г. Гудайль предложил новый закон, который гласит, что И. пропорционально величине некоторой фиктивной "поверхности И.", которая получится, если мы построим поверхность, соединяющую все точки среды, окружающей жидкость, в которых упругость паров еще насыщает пространство. Нужно полагать, что предположение Гудайля правильно и что неправильности формул Дальтона и Стефана происходят от влияний краев сосуда на истечение и диффузию пара. Влияние трудности диффузии на скорость И. заметно даже в широких сосудах. Стефан (1882 г.) теоретически показал, что в круглом сосуде радиуса r на расстоянии а от центра вследствие большей трудности диффузии испарится меньше, чем у краев, а именно: где P — все количество испарившейся жидкости. Опыты Винкельмана (1888 г.) вполне подтвердили формулу Стефана. Влиянию различной легкости диффузии следует также приписать разности в И. из равновеликих сосудов разных форм. Фризиани (1876 г.), испаряя воду с 5 равных поверхностей формы круга, шести-, пяти-, четырех— и треугольника, получил относительные количества 1:1,03:1,02:1,03:1,12. И. из тонких капиллярных трубок следует приведенным выше законам, только пока уровень жидкости не опустится в трубке; тогда, как показал Стефан (1874 г.), испарение следует законам: 1) И. обратно пропорционально расстоянию уровня от края трубки, 2) скорость И. не зависит от диаметра. Опыты Гульелмо (1882 г.) и Винкельмана (1884 г.) подтвердили в общем положения Стефана, но Винкельман показал, что эти законы лишь приблизительны и изменяются, смотря по обстоятельствам (состав жидкости, температура, давление и т. д.). 2) Влияние природы внешней среды и ее движений. Природа внешней среды влияет постольку, поскольку меняется коэффициент диффузии пара с изменением ее. В 1876 г. Кирхман показал, что камфара, легко улетучивающаяся и возгоняющаяся в воздухе, вовсе не улетучивается при тех же условиях в углекислоте и, как позже показал де Гин (1891 г.), — в водороде. По опытам Кирхмана, углекислота плохая испарительная среда для терпенов, хлороформа и сернистого углерода и, наоборот, хорошая для эфира, алкоголей и воды. Струя углекислоты, пропущенная над смесью спирта с эфиром, быстро испаряет эфир, извлекает воду из эфирных масел и т. д. В 1877 г. Баумгартнер нашел для эфира, сернистого углерода, хлороформа и алкоголя приблизительно следующие отношения скоростей И. в воздухе, углекислоте, водороде и светильном газе:
Почти те же величины получил и Гульельмо (1881 г.), исследовавший тот же вопрос. Отсюда Баумгартнер заключил, что скорость И. обратно пропорциональна корням квадратным из плотностей газов (отн. плотностей 1:1,5:0,45:0,069, обратно отн. корня из плотностей 1:0,82:1,5:3,85). Винкельман, исследуя И. гомологич. эфиров в воздухе, углекислоте и водороде, нашел этот закон лишь приблизительно верным. По де Гину (1890 г.), И. зависит и от внутреннего трения газовой среды и скорость И. тем больше, чем больше коэффициент внутреннего трения [Наблюдения над И. и служат для определения коэффициентов диффузии.]. Движения газовой среды, окружающей жидкость, сильно способствуют быстроте И. Влияние их заключается в удалении газа, уже насыщенного парами, и в ускорении процесса диффузии. Сильное влияние ветра на быстроту было известно уже давно. Гудайль (1885 г.) наблюдал, что ветер со скоростью всего 0,25 м в секунду увеличивает И. почти в три раза. Подробнее исследовал вопрос де Гин (1891 г.); он нашел, что вначале скорость И. растет весьма быстро с увеличением скорости воздушного потока, при больших же скоростях все медленнее и медленнее; для средних скоростей скорость И. пропорциональна корню квадратному из скорости воздушного потока. 3) Влияние температуры. Повышение температуры жидкости и окружающей среды влияет двояко на увеличение скорости И.: 1) повышая упругость пара жидкости и 2) облегчая диффузию паров. С повышением t° быстро растет упругость паров, насыщающих пространство, как видно из следующего:
Камфара: при T = 41°... 1,7 мм; при Т = 101°... 27,2 мм; при Т = 160°... 240,7 мм (по Рамзею и Юнгу).
По Дальтону (1803), скорость И. растет пропорционально разности (F — f). Де Гин (1892), работавший на 89 лет позже, пришел к аналогичной формуле: где А — постоянная, a v скорость течения воздуха. Стефан (1874) поверил опытами свою формулу (форм. 2) и нашел ее согласной с действительностью; по-видимому она, хотя и выведена из теоретических оснований, ближе выражает истину, чем формула Дальтона и де Гина. Когда в этой формуле F =H, то наступает неограниченное И., т. е. кипение [На упругость пара, а следовательно, и скорость И., кроме температуры, влияет еще, как показали лорд Кельвин (1870), Варбург, Гельмгольц (1875) и др., и величина поверхностного натяжения жидкости. И. должно идти быстрее с выпуклых поверхностей и медленнее с вогнутых. Но это влияние так незначительно, что для мениска в трубке в 0,001 мм диам. изменение упругости пара равно едва 0,1°.]. Повышение температуры облегчает диффузию паров и увеличивает поэтому скорость И.; это предсказал Стефан и подтвердил опытами Винкельман (1884). Последний показал, что при высоких температурах И. в капиллярных трубках вследствие легкости диффузии не следует второму закону Стефана (см. выше); де Гин (1891) показал, что даже одно нагревание внешней газовой среды благодаря облегчению диффузии ускоряет И. Жерне (1874-1876), исследуя И. перегретых выше точки кипения жидкостей, получил результаты, к которым не приложимы ни законы Дальтона, ни Стефана, очевидно вследствие сильного выделения пара и быстрого его удаления во внешнюю среду. 4) Влияние внешнего давления и паров, заключающихся во внешней среде. По формуле Дальтона (форм. 1), И. обратно пропорционально барометрическому давлению. Гудайль (1885), проверяя эту формулу, нашел ее достаточно точной при спокойном воздухе, Винкельман же (1888) убедился, что формула Стефана ближе выражает истину; опыты с водой при внешних давлениях от 50-760 мм дали разницы с формулой Стефана лишь в 1,5%, а с формулой Дальтона — до 12%. Влияние влажности внешнего воздуха на скорость И. воды исследовал непосредственно только де Гин (1891). Он пропускал (при Т = 20°) над испарителем струю воздуха разной влажности от 0% до 100% и получил при этом следующие относительные количества испарившейся воды:
Интересен факт, что и насыщенный парами воздух увлекал еще водяные пары, хотя, вероятнее всего, это увлечение было чисто механическое. 5) Влияние природы вещества. Различные вещества, обладая различной упругостью пара и различными коэффициентами диффузии их паров, обладают при тех же условиях различной скоростью И. Так, при Т = 20° Ц. имеют упругости пара:
Коэффициенты диффузии в воздухе при 0°:
Неоднократно пытались, не входя в эти особенности каждого вещества, определить зависимость между молекулярными весами веществ и скоростью их И. Де Гин (1883) нашел, изучая И. эфиров жирных кислот, что "молекулярная летучесть" их, т. е. частное от убыли в весе в единицу времени, деленное на молекулярный вес, образует геометрическую прогрессию с определенным знаменателем для каждого ряда веществ (знаменатель приблизительно = 3). Аналогичные законы нашли Винкельман (в равные времена испаряются равные веса) и Спербе (1887). Позже, в 1891 г., де Гин думал найти новую законность — именно что количества испарившихся веществ caeteris paribus относятся как произведения упругости пара на молекулярный вес. Ближе к истине подходит простой закон, найденный и проверенный на большом количестве веществ Шаллем и Коссаковским (1891), именно: времена, в которые испаряются равные веса жидкостей (кроме воды и некоторых спиртов), обратно пропорциональны молекулярным весам, т. е. (Zmp)/s = Const ... (5), или произведение времени И. (Z) на молекулярный вес (т) и упругость пара (р), разделенное на плотность (s), есть величина постоянная, близкая к единице. Эта величина для
И. растворов солей идет медленнее И. одного растворителя, так как упругость паров раствора тем меньше упругости паров растворителя, чем больше соли в растворе. Так, по Вюльнеру упругости водных растворов едкого кали (КOН) при 20° Ц. следующие:
между тем как для воды при 20° Ц. упругость равна 17,4 мм. Лаваль (1885), исследовавший в обширной работе различные вопросы И., нашел для И. растворов зависимость: е/Е = K² ... (6), где е — количество испарившегося раствора, Е — количество воды, испарившейся при тех же условиях в то же время, s отношение количества соли в растворе к тому, которое насыщало бы раствор при этой температуре, К — коэффициент, величина которого для:
и т. д. Величина К приблизительно равна для всех температур. И. смесей легко испаряющихся жидкостей подчиняется весьма сложным законам. Планк (1888) показал теоретически, что состав пара этих смесей в процентном отношении другой, чем состав смеси; Коновалов (1881) и Винкельман (1890) подтвердили это на опыте. Напр. пар 6,1% раствора изобутилового спирта в воде имеет состав пара: 66% спирта и 34% воды. Вот, по Лавалю, результат двух опытов над И. спирта с водой:
Растворение газов в воде (CO 2, NH3) замедляет, по Лавалю, ее И., содержание в ней мелких подвешенных в ней тел (мел и т. д.) ускоряет И. 6) Влияние природы поверхности, с которой происходит И. Опыты Виоли (1873), Фризиани (1877), де Гина и других показали, что И. происходит быстрее со смоченной поверхности, впитывающей жидкость (напр. пропускная бумага), чем со свободной поверхности ее. Лаваль (1885) показал, что это справедливо не для всех поверхностей и не для всех жидкостей. Весьма важный в геофизическом отношении вопрос об И. воды из земли исследован был Габерландтом (1881) и Бателли (1891). Результаты этих исследований дали: 1) И. с сырой земли при возрастающей температуре больше И. с равной свободной поверхности воды, при падающей температуре — меньше; 2) с увеличением скорости ветра скорость И. со свободной поверхности растет быстрее, чем И. с земли; 3) чем больше влажность воздуха, тем больше отношение И. с земли к И. со свободной поверхности; 4) отношение это растет при возрастающей температуре и падает при убывающей. 7) Другие влияния. Электризация жидкости, по опытам Маскара (1876), увеличивает скорость И. иногда в 2-3 раза; увеличение скорости зависит, очевидно, от ускорения диффузии, так как, по теоретическим выводам Бути и И. И. Томсона, электризация поверхности жидкости уменьшает, правда, весьма, незначительно, упругость пара над ней.
Вопросы о скорости И. имеют весьма важное значение как для изучения природы, так и в промышленности (перегонка, устройство паровых котлов и т. д.). Выветривание (см.) кристаллов представляет И. кристаллической воды их. Дебре (1868) показал, что и выветривание имеет предельную упругость, по достижении которой в замкнутом сосуде прекращается. Видеман (1874) и Мюллер-Ерцбах (1884) подтвердили данные Дебре и тождество выветривания с испарением. Распыление металлов в пустоте при накаливании током и распыление их при освещении, недавно (1890) наблюденное Ленардом и Вольфом, не причисляются обыкновенно к явлениям И., хотя все опытные данные указывают на то, что нет никаких причин делать это различие.
Если вещество может существовать при той же t° в двух видах — твердом и жидком, как напр., вода, то, как показали В. Томсон и Кирхгоф, ниже температуры плавления упругость паров жидкости будет больше упругости паров твердого тела при той же температуре; при температуре плавления упругости паров твердого и жидкого тела равны. Поэтому переохлажденная вода испаряется быстрее льда, а при 0° И. льда и воды идет одинаково быстро. По опытам Фишера, разница в упругости паров льда и воды при -10 градусах равна 0,28 мм ртутного столба, при — 5°... 0,18 мм, при -1°... 0,03 мм, а при 0° этой разницы, как и предвидит теория, нет. 1) Тепло, поглощаемое при испарении, называется скрытой теплотой парообразования и состоит из суммы двух частей: одна часть тепла идет на внешнюю работу, потребную для расширения вещества из объема жидкости в объем пара (внешняя скрытая теплота), другая уходит на само изменение состояния, т. е. на преодоление противодействующих И. сил сцепления (внутренняя скрытая теплота). С увеличением температуры первая величина увеличивается, вторая — уменьшается, и сумма обеих величин при этом уменьшается. Величины скрытых теплот для разных температур воды в калориях (единицы теплоты) следующие (по Цейнеру):
Скрытая теплота парообразования у различных веществ весьма различна, у воды около 550-600 калорий, у хлороформа... 67, у эфира... 93, у жидкой углекислоты ... 57, у жидкого аммиака... 294. Были попытки найти зависимость между скрытой теплотой парообразования и другими постоянными у разных веществ. Довольно близок к истине закон Троутона (1884): Мr/T = Const. (7), т. е. произведение молекулярного веса (М) на теплоту парообразования (r), деленное на абсолютную температуру кипения (T) [Абсолютная температура получается из температуры, выраженной в градусах Ц., прибавлением 273; напр. абс. темп. кипения воды = 100 + 273 = 373.], есть величина постоянная (около 23-26). Тепло, поглощающееся при И., отнимается от испаряющегося вещества и окружающей среды и производит охлаждение. Это охлаждение может при быстром И. достигнуть весьма сильной степени, и потому охлаждение посредством И. часто применяется в обыденной жизни и промышленности. И. эфира, жидкого аммиака или др. веществ замораживают воду в особых холодильных машинах и добывают лед, И. воды охлаждают ее самое (см. соотв. статью). Испарением жидкой углекислоты, жидкого воздуха и других сжиженных газов (см.) можно достигнуть наиболее низких известных температур (до -200° Ц.). 2) Раньше предполагали, что электризование сосуда и жидкости, сопровождающее обыкновенно всякое быстрое И. жидкости, есть явление, имеющее органическую связь с И. (Гоген, Рике). Опыты Блэка и Калишера показали, однако, что электризация зависит исключительно от трения паров о стенки сосуда, и доказали также неправильность взглядов Пальмиери (1861), полагавшего, что конденсация жидкостей сопровождается электризацией. Электризация при И. достигает иногда весьма сильной степени. При выходе паров из железной бутыли с жидкой углекислотой бутыль электризуется до того сильно, что из нее скачут длинные искры (см. также Гидроэлектрическая машина Армстронга).
3) При И. жидкостей увлекаются парами частицы растворенных в жидкости веществ. Маргерит-Делашарлонни (1886) наблюдал эти явления и нашел их даже при низких температурах и довольно слабых растворах.
Другая теория (Рамзей и Юнг, Леман и др.) предполагает, что молекулы жидкости суть комплексы газовых молекул, что при нагревании часть комплексов разлагается, часть газовых молекул уходит в пространство, другая же часть остается в жидкости. Равновесие наступает, когда число входящих в жидкость и выходящих из нее газовых молекул одинаково. Вопрос о том, существует ли граница испарения, т. е. температура, при которой упругость пара равна нулю, не решен. Дюринг предполагает ее существование; Винкельман и Дюринг полагают, что она для воды лежит при -100° Ц. Демарсэ опытно искал этой температуры для металлов и нашел для кадмия 160°, для цинка 184°, для висмута 292°, для свинца и олова 360°. Эти температуры дают лишь границы, при которых И. еще заметно, но не дают в действительности границы И. Вопрос этот пока не решен; по теории Клаузиуса, граница И. наступит, когда живая сила частицы не будет в состояния вывести ее из сферы действия соседних частиц. Причина, по которой некоторые вещества легко испаряются, лишь когда переходят из жидкого состояния в газообразное, другие же способны прямо переходить из твердого состояния в пары, лежит не в особенностях природы этих веществ, как полагали раньше, а лишь в условиях температуры и давления, в которых они находятся. Оствальд объяснил эти явления, указав на то, что всякое вещество, могущее переходить из жидкого состояния в твердое, можно посредством уменьшения давления сделать нерасплавляющимся, и наоборот, сделать посредством увеличения давления плавкими такие вещества, которые обыкновенно переходят прямо из твердого состояния в газообразное. Температура плавления мало зависит от давления, температура кипения, наоборот, весьма сильно; поэтому уменьшением давления можно достигнуть того, что падение температуры кипения перегонит падение температуры затвердевания и тогда тело может сильно испаряться и кипеть ниже температуры своего плавления. При этих условиях вся теплота, которую мы приложим к веществу, будет тратиться на его И., и вещество, сколько бы мы его не нагревали, не достигнет точки плавления. Таким образом, свойства всех веществ можно сделать, в общем, близкоравными и аналогичными, если только поставить их в соответствующие им условия температуры и давления. А. Гершун. Испарение (физико-географ. и метеорол.). Значение И. как фактора климата и особенно его роль в круговороте воды на земном шаре вполне оправдывают попытки введения его в круг метеорологических наблюдений. Но выше уже было указано, как трудно получить сравнимые между собой данные. Следующая таблица показывает это еще яснее. Опыты были сделаны в Страфильде, Тергиссе, в Англии, причем испаритель II имел диам. 8 дм. и был помещен в тени, остальные на солнце; испаритель IV имел поверхность 36 кв. фт. (3,33 м 2), глубина воды в нем 0,55 м и он был врыт в землю; VI и XIV имели диаметр 5 дм.: первый был помещен на 4 дм., второй на 1 фт. над землей. За 6 месяцев (апрель — сентябрь) теплого и сухого 1870 г. И. в мм:
Здесь ясно видно влияние затенения (II сравнительно с остальными), величины сосуда (IV сравнительно с другими на солнце), высоты над поверхностью (VI и XIV) и даже материала сосуда: в менее теплоемких и более теплопроводящих металлических вода более нагревается на солнце, а потому и И. больше. Большая часть наблюдений в России сделана посредством весового эвапориметра Вильда, небольшого сосуда, помещенного в тени, в термометрической клетке (см. Температура воздуха); но и при таких условиях получаются очень различные величины, как показывает след. пример двух близких мест. Е — среднее суточное И. в мм, t средняя t°, е'/е — относительная влажность, W — сила ветра в метрах в секунду.<
Статья про "Испарение" в словаре Брокгауза и Ефрона была прочитана 18613 раз |
TOP 15
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||