![]() |
![]() |
![]() |
|||||||
БНБ "БРОКГАУЗ И ЕФРОН" (121188) - Photogallery - Естественные науки - Математика - Технология
|
ПиридинОпределение "Пиридин" в словаре Брокгауза и Ефрона
Пиридин С 5 Н 5 N. — Это вещество вместе с целым рядом аналогичных ему соединений, вообще называемых пиридиновыми основаниями, было открыто в 1846 г. Андерсоном при исследовании костяного масла, получающегося сухой перегонкой необезжиренных костей. С момента своего открытия П. весьма заинтересовал химиков своими свойствами, во многом напоминающими свойства бензола, и тем, что начинал собой целый ряд гомологов. В 1869 г. Кернер в частном письме к Каниццаро высказал мысль, что П. может быть рассматриваем, как бензол, в котором одна группа СН замещена азотом, т. е. что П. имеет строение:
Этот синтез с несомненностью установил замкнутое строение П., что же касается расположения двойных связей, то вопрос этот оставался открытым, да и до сих пор не решен вполне удовлетворительно. Здесь мы, быть может, встречаемся с тем же фактом, который наблюдается для бензола, ацетоуксусного эфира, нитрозофенолов и многих других соединений, именно: по-видимому, взаимное положение двойных связей П. не постоянно и изменяется в различных его производных. Есть много данных за формулу Кернера и Дьюара; однако в 1883 г. Либен и Гайтингер, с одной стороны, и Ридель, с другой, пришли для П. к формуле
Вполне чистый П. легче всего получается из сырого продажного продукта, подвергая его действию окислителей; тогда гомологи П. дают карбоновые кислоты, П. же остается неизмененным и может быть отделен от кислот промыванием едкими щелочами; продажный продукт можно также перевести в хлористоводородную соль и осаждать П. из слабых солянокислых растворов в виде двойной соли с HgCl 2 или с ферроциановокалиевой солью. Очищенный тем или другим способом П. представляет бесцветное, не изменяющееся на воздухе масло с неприятным запахом, кипящее при 116—117°, уд. веса 1,0033, растворимое в воде, спирте, эфире и т. д. П. обладает ясно выраженным характером одноатомного основания; соли его легко растворимы в воде и образуют многочисленные двойные соли. С водой П. образует кипящий при 92—93° гидрат C 5H5N·3H2 O. Чистый П. не реагирует с самыми сильными окислителями: в этом отношении его кольцо прочнее бензольного; наоборот, от действия HJ при 300° П. разрушается, давая аммиак и пентан. По аналогии с бензолом нужно было бы ждать образования пентаметилена или пентаметиленамина. При восстановлении натрием в спиртовом растворе П. переходит в гексагидро-П., или пиперидин (см. ниже); при действии же натрия на сухое основание получается 4-дипиридил C 5H4N—C5H4 N, дипириден C 10H10 N и изоникотин C 10H14N2; первый продукт образуется также при пропускании паров П. через раскаленные трубки. П., имея в своем ядре третичный азот, способен соединяться с йодюрами спиртов, давая аммониевого типа пиридиниевые соединения, напр., П. с йодистым метилом дает C 5H5N—CH3 —J; эти соединения тверды, часто аморфны, с влажной окисью серебра дают малопрочные, сильно щелочные основания, которые при перегонке с едким кали переходят в замещенные дигидро-П., а при нагревании до 290—300° в замещенные П. При нагревании с монохлороуксусной кислотой П. дает хлористоводородный П.-бетаин:
3CH3—CHO—NH3 + 6(CH3)2CO = 2C5H2N(CH3)3(II, IV, VI) + C5H3N(CH3)3(II, IV, VI) + 9H2O;
5) из костяного масла (ol. animal. Dippeli) дробной перегонкой (Андерсон, Вейдель, Ладенбург и Рот, Чамичан) [Чамичан совместно с Вейделем показал, что присутствие пиридиновых оснований в костяном масле нужно приписать взаимодействию, совершающемуся при высокой температуре сухой перегонки костей между высшими жирными альдегидами и аммиаком; эти же продукты образуются, с одной стороны, разложением кислот жира, а с другой, при сухой перегонке клея, так как чистый клей (желатин) при этих условиях дает аммиак, жирные амины и пиррольные производные. На основании этого в костяном масле, приготовленном из обезжиренных костей, не может находиться П.]. Теоретически их можно образовать, замещая последовательно водороды пиридинового ядра углеводородными радикалами. Благодаря гетерогенности ядра число изомеров пиридиновых оснований весьма велико, и далеко не все из них получены. Теория предсказывает 3 метилпиридина C 5H4N—CH3; все они получены и известны под названием пиколинов. В 1846 г. Андерсон нашел в каменноугольной смоле основание C 6H7 N, которое и назвал пиколином от слов pix — смола и oleum — масло. Позднее то же основание было выделено из продуктов сухой перегонки битуминозных сланцев и некоторых сортов торфа, из продуктов разложения цинхонина (при перегонке его с едким кали) и паров никотина (при прохождении их через раскаленные трубки). Исследование этого пиколина показало, что он состоит главным образом из 2 изомеров: α-метил-П., или α-пиколина, и β-метил-П., или β-пиколина. α-Пиколин впервые был выделен Вейделем в 1879 г. из сырого пиколина при помощи двойной платиновой соли. α-П. представляет бесцветное, легко растворимое в воде масло, кипящее при 129—130°, уд. в. 0,965. β - Пиколин открыт Байером в 1870 г. при сухой перегонке акролеин-аммиака. Получается он обыкновенно при нагревании глицерина с фосфорным ангидридом и фосфорноаммиачной солью. β-Пиколин по своим свойствам весьма похож на α-пиколин, кипит при 142—143°, уд. вес D°о = 0,977. γ - Пиколин открыт Вейделем в сыром пиколине и получается при перегонке изоникотиновой кислоты и спартеина. Точка кипения его 144—145°, уд. вес D = 0,971—0,974. Как видно из сопоставления вышеприведенных данных, все три изомерных метил-П. весьма близки между собой по своим физическим свойствам; та же близость наблюдается и в их химическом характере; кроме свойств, присущих П., пиколины обладают следующими чертами, специфическими для гомологов П.: 1) действием окислителей они легко переходят в пиридинкарбоновые кислоты C 5H4N—CH3 + 3О = C 5H4 N—CО 2 —Н + Н 2 О; 2) при нагревании с альдегидами или кетонами они образуют или гомологи П. с непредельной боковой цепью, или же оксипиридиновые основания. Так, при нагревании с бензойным альдегидом *-пиколин дает *-стильбазол C5H4N.CH:CH.C6H5, кристаллическое вещество, плавящееся при 90, 5° — 91° и кипящее при 324 — 325°. Следующие за пиколинами — гомологи П. известны под названием лутидинов. Название это дано было в 1851 г. Андерсоном основанию, выделенному им из костяного масла и имеющему формулу С 7 Н 9 N, тождественную с формулой толуидина. Для указания на это тождество Андерсон и предложил название "лутидин", полученное перестановкой букв в слове "толуидин". Впоследствии оказалось, что лутидин Андерсона есть смесь различных оснований. Теория предсказывает 9 возможных изомерных лутидинов, из которых получены только 8, именно: 1) α -, β - и γ -этил-П. получены синтетически и, кроме того, β - и γ - этил.-П. находятся в продуктах разложения цинхонина, стрихнина и бруцина; 2) пять диметилпиридинов: αα ' лутидин, или αα'-диметилпиридин, выделен в чистом состоянии в 1885 г. Ладенбургом из каменноугольной смолы, представляет жидкость с мятным запахом, более растворимую в холодной воде, чем в горячей (черта, свойственная всем дальнейшим гомологам), кипящую при 142°, уд. в. D° 0 = 0,9424. αγ -Лутидин, полученный Ладенбургом одновременно с αα'-лутидином, — жидкость с запахом свежих огурцов, кипит при 156—157°, уд. в. D° 0 = 0,9503. ββ ' -Лутидин получен в 1890 г. Дюркопфом и Геттшем перегонкой ββ'-метилпиколиновой кислоты с известью, представляет сильно преломляющую свет жидкость с приятным запахом, кипящую при 169—170°, уд. в. D°0 =0,9614. Относительно четвертого изомера αβ'-лутидина известно только, что он кипит при 162—166° и при окислении дает изоцинхомероновую кислоту. βγ-Лутидин исследован в 1896 г. Аренсом, получается из каменноугольной смолы, кипит при 163,5°—164,5°. Коллидины C8H11 N. Название дано Андерсоном, как основанию, изомерному ксилидину. Теоретически возможны 22 изомера: 3 пропил-П., 3 изопропил-П., 6 триметил-П. и 10 метилэтил-П. Получено только 11 с известной группировкой боковых цепей и 4 с неизвестной. Из них наиболее интересны: α-пропил-П., или конирин, получен впервые Гофманном в 1881 г. при перегонке с цинковой пылью хлористоводородного кониина, жидок, кипит при 165—168°, легче воды, обладает неприятным, напоминающим П. запахом; α-метил-β'-этил-П., альдегидколлиоин, альдегидин, находится в сивушном масле; ароматическое масло, кипит при 173—174°, уд. в. D° 0 = 0, 9395; αα ' γ -триметил-П., симметрический коллидин, жидок, кип. при 171—172°, уд. в. D° 0 = 0, 9312. Парволин C9H13 N (название дано Вильямсом основанию по причине его малой летучести) выделен из продуктов сухой перегонки битуминозных сланцев Дорзетшайра; из 54 возможных изомерных парволинов известны только 11, из которых 6 с неизвестным строением: αβγβ ' -тетраметил-П. выделен Аренсом из каменноугольной смолы, жидок, кипит при 233—234°. Фенилированные П. имеют только исторический интерес, так как α- и β -фенил-П. C5H4N—C6H5 послужили Скраупу и Кобенцелю для установки формулы строения пиколиновой и никотиновой кислот (см. ниже).
При действии HJ при высокой температуре пиперидин распадается на аммиак и пентан. Перекись водорода весьма характерно реагирует с пиперидином; при этом наблюдается размыкание кольца с образованием альдегида амидовалериановой кислоты: Рядом с этим происходит простое окисление двух групп СН 2 в СО, результатом которого получается имид (см.) глутаровой кислоты. Как всякий вторичный амин, пиперидин реагирует с ангидридами или хлорангидридами кислот, и получаемые замещенные пиперидины весьма легко окисляются, образуя производные амидомасляной или амидовалериановой кислоты. При действии 2 мол. йодистого метила пиперидин дает йодистый диметилпиперидиний; эта соль с влажной окисью серебра переходит в свободное основание С 5 Н 10 N(ОH)(СН 3)2, которое настолько непрочно, что при простой перегонке его выделяется вода и разрывается кольцо с образованием пентенилдиметиламина (СН 3)2 N(СН 2)3 —СН=СН 2, который раньше неправильно назывался диметилпиперидином. Этот последний продукт также способен реагировать с CH 3 J и Ag 2 O, давая гидрат окиси пентенилтриметиламмония (OH)(CH3)3N(CH2)3—CH=CH2, который, в свою очередь, при перегонке разлагается на воду, триметиламин и пиперилен СН 2 =СН—СН 2 —СН=СН 2. Гомологи пиперидина повторяют свойства самого пиперидина и до сих пор не представляют большого научного интереса. Названия их производятся вставкой слога "пе" после первого слога названия соответствующего пиридинового основания, след., рядовые их названия будут: пипеколины, лупетидины, копеллидины и т. д. Из этих соединений имеет интерес только α -пропилпиперидин, как тождественный с алкалоидом кониином (см.).
Непосредственное замещение водородов ядра отрицательными радикалами в П. идет вообще крайне трудно; галоидозамещенные П. получаются только при действии галоидных соединений фосфора или сурьмы на окси-П., при непосредственном же хлорировании выходы ничтожны, а в случае гомологов П. галоид идет в боковые цепи. При действии PCl 5 на П. получается тетрахлор- и пентахлор-П. Сульфация идет несколько легче, и при весьма продолжительном кипячении П. с крепкой серной кисл. получается β-сульфопиридиновая кислота C5H4NSO3 H, которая довольно легко обменивает свою сульфогруппу на другие отрицательные радикалы и, напр., с цианистым калием дает β-циан-П., или нитрил никотиновой кислоты C 5H4 N—CN, плавящийся при 49°. Нитрация удается только тогда, когда пиридиновое ядро имеет группы NH 2, или ОН, или др., облегчающие нитрование и бензольного ядра; но и в этих случаях приходится прибегать к продолжительному нагреванию или дымящейся азотной кислоте. Ввиду только что указанных обстоятельств нитро-П. неизвестны, получены же только оксинитро- и амидонитропроизводные. Амидопиридины получаются исключительно по реакции Гофманна, обработкой амидов П.-карбоновых кислот бромом в щелочном растворе. Амидо-П. являются высококипящими твердыми телами, мало изменяющимися на воздухе.
Здесь приходится столкнуться с очень интересным случаем таутомерии: по-видимому, группировки — CO—NH— и —C(OH)=N — вообще очень непостоянны и легко переходят одна в другую под влиянием различных реагентов; даже в таких соединениях, как кислотные амиды R—CONH 2, замечается тенденция образовать производные имида R—C(OH)=NH, в циклических же соединениях, подобных α- или γ-окси-П., эта способность всегда весьма резко выражается в производных, тогда как начальное вещество, по-видимому, не имеет двух форм и потому неизвестно, какую из них нужно придавать ему. Разбираемый здесь случай таутомерии (см.) еще интересен и тем, что с ясностью указывает на таутомерию и самого пиридинового кольца в α- и γ-пиридонах: из них первый отвчает формуле Кернера, а второй — формуле Риделя. Вообще, причина появления таутомерных форм не выяснена еще в достаточной степени; однако с некоторым вероятием здесь можно предполагать влияние температуры, с повышением которой ослабляется постоянство связей и, след., причина таутомерии; по этому воззрению, высказанному в последнее время Кнорром, есть как бы начало, или первая степень, диссоциации. Придерживаясь этого взгляда, можно думать, что, выделяя, напр., α-окси-П. при весьма низкой температуре один раз из α-этоксипиридина С 5 Н 4 (ОС 2 Н 5)N, а другой раз из п - этил-α-пиридона C5H4ON—C2H5 мы получим два различных вещества. α-Окси-пиридин C5H5 ON, твердое тело с точкой плавления 106°, получается из оксиникотиновой и оксихинолиновой кислот; с бромной водой дает дибромокси-П. С 5 Н 3 Вr 2 ОN. При обработке его йодистым этилом получается п-этил - α-пиридон C5H4ON—C2H5, кипящий при 247°, при действии же иодистого этила на серебряную соль α-окси-П. получается этильный эфир α-окси-П., кипящий при 156°. β-Окси-П. получается при сплавлении β-сульфопиридиновой кислоты с едким кали, плавится при 154° и кипит без разложения. γ-Окси-П. получается из оксипиколиновой кислоты, плавится при 146°; п-метил- γ-пиридон плавится при 89°, а γ-метокси-П. жидок и кипит при 190°. Диоксипиридины C5H3(OH)2 N получаются из диокси-П.-карбоновых кислот и из них наиболее интересны отвечающие формуле R (β)—C5H2(OH)(α, α ') —N, так как по расположению гидроксилов они напоминают резорцин и с фталевым ангидридом (см.) дают краски. Пиридинкарбоновые кислоты получаются окислением гомологов П. раствором марганцево-калиевой соли, причем все боковые группы, как жирные, так и ароматические, сгорают до карбоксилов. По этой причине большая часть алкалоидов, как производные П., при энергичном окислении в виде конечных продуктов дают П.-карбоновые кислоты. Синтетический метод получения П.-карбоновых кислот, выработанный Гантчем, основан на конденсации ацетоуксусного эфира с альдегидоаммиаками и разбивается на две части: на получение дигидро-П.-дикарбонового эфира и окисление этого последнего: 2CH 3 —CO—СН 2—CO2C2H5 + CH3—CH(OH)NH2 = С 5 Н 2 (СН 3)3(CO2C2H5)2 N + 3Н 2 О; С 5 Н 2 (СН 3)3(CO2—C2H5)2 N + О = С 5 (СН 3)3(CO2—C2H5)2 N + Н 2 О. При этом Гантч и Эпштейн показали, что всегда в этом случае метильныt группы ацетоуксусного эaира становятся в α -, α'- положения, а радикал альдегида в γ-положение. Кроме указанных способов, монокарбоновые кислоты могут быть получены из поликарбоновых, которые при нагревании легко выделяют СО 2 из своих карбоксилов, причем обыкновенно наблюдается первоначально отщепление CO 2 из α-положения. П.-карбоновые кислоты по своему химическому характеру напоминают амидокислоты, причем основные свойства этих последних в них постепенно исчезают с накоплением карбоксильных групп. Натрием в спиртовом растворе они, подобно всем пиридиновым соединениям, восстановляются с присоединением атомов водорода, переходя в соответствующие пиперидинкарбоновые кислоты. В П.-карбоновых кислотах, вообще говоря, П. ядро сильно ослаблено, так как весьма многие П.-карбоновые кислоты при действии амальгамы натрия в щелочном спиртово-водном растворе восстановляются с выделением NH 3 в жирные окси- или лактонокислоты; при этом группировка —CH=N—CH= переходит в CO 2H(NH2)CH(OH)— или в —СО—О—СН 2 и (NН 3), например: α C5H4N—CO2H + H2 + 3Н 2 О = СО 2 Н—СН 2 —СН 2 —СН 2 —СH(ОН)—СО 5 Н + NH 3 и
СО 2 Н—СН 2 —СН 2 —СН 2 —СH(ОН)—CO 2 H — Н 2 О =
В теоретическом отношении П.-карбоновые кислоты важны потому, что они служат базами для суждения о расположении боковых групп различных П. соединений, которые, как видно из вышесказанного, окисляясь, легко в них переходят. По этой причине строение их весьма тщательно разрабатывалось Скраупом, Ладенбургом и др., которые и установили вполне точно положение карбоксильных групп относительно атома азота. Пиридинмонокарбоновые кислоты: Пиколиновая кислота α-С 5 Н 4 N—СО 2 Н плавится при 135—136° и возгоняется. Получается окислением α-пиколина (Вейдель) и, как все α-П.-карбоновые кислоты, раствором железного купороса окрашивается в желтый цвет. Никотиновая кислота β -C5H4N—CO2 H, темп. плав. 209°, получается окислением β-пиколина, открыта Губером при окислении никотина (см.) хромовой смесью. Изоникотиновая кислота γ -C5H4N.CO2 H плавится при 304°, получается окислением γ-пиколина и отщеплением углекислоты от цинхомероновой кислоты (Скрауп и Гугеверф, ван-Дорп). Пиридиндикарбоновые кислоты. Хинолиновая кислота αβ-С 5 Н 3 N(СО 2 Н) 2, темп. пл. 190°, получается окислением хинолина (см.) и его замещенных (в бензольном ядре) производных. Цинхомероновая кислота β, γ-С 5 Н 3 N(СО 2 Н) 2, темп. пл. 266°, получается окислением цинхонина, цинхонидина или изохинолина, при восстановлении амальгамой натрия легко переходит в цинхоновую кислоту С 7 Н 6 О 5, а эта последняя при нагревании распадается на СО 2 и пироцинхоновую кислоту или ангидрид диметилмалеиновой кислоты. Лутидиновая кислота * α , γ -C5H3N(CO2H)2 + 2H2 O, темп. пл. 235°. Изоцинхомероновая кислота αβ '-C5H3N(CO2H)2, темп. пл. 236°. Дальнейшие П.-поликарбоновые кислоты мало изучены; некоторый интерес из них представляют бербероновая кислота α ' βγ -C5H2N(CO2H)3, получающаяся окислением алкалоида берберина, и П.-пентакарбоновая кисл. С 5 N(СО 2 Н) 5 + 2Н 2 О, получающаяся окислением коллидиндикарбоновой кислоты. Оксипиридинкарбоновые кислоты важны как исходные продукты для получения оксипиридинов (см. выше). В своих производных они, как и окси-П., являются в 2 таутомерных формах — или как окси-, или же как кетосоединения. По своему характеру эти кислоты напоминают амидоокси- или амидокетокислоты и получаются особенно легко при действии аммиака на соответствующие пиронкарбоновые кислоты (см. Пирон): С 5 Н 3 О 2—CO2H + NH3 = C5H4(OH)N—CO2H + H2O.
Статья про "Пиридин" в словаре Брокгауза и Ефрона была прочитана 2172 раз |
TOP 15
|
|||||||