Периодическая законность химических элементов

Определение "Периодическая законность химических элементов" в словаре Брокгауза и Ефрона


Периодическая законность химических элементов — После открытий Лавуазье (см.) понятие о химических элементах и простых телах так укрепилось, что их изучение положено в основу всех химических представлений, а вследствие того взошло и во все естествознание. Пришлось признать, что все вещества, доступные исследованию, содержат очень ограниченное число материально разнородных элементов, друг в друга не превращающихся и обладающих самостоятельной весомой сущностью (см. Вещество и Веса атомов), и что все разнообразие веществ природы определяется лишь сочетанием этих немногих элементов и различием или их самих, или их относительного количества, или при одинаковости качества и количества элементов — различием их взаимного положения, соотношения или распределения (см. Изомерия). "Простыми" телами должно при этом назвать вещества, содержащие лишь один какой-либо элемент, "сложными" — два или более. Но для данного элемента могут существовать многие видоизменения простых тел, ему отвечающих, зависящие от распределения ("строения") его частей или атомов, т. е. от того вида изомерии, который называется "аллотропией". Так, углерод, как элемент, является в состоянии угля, графита и алмаза, которые (взятые в чистом виде) дают при сжигании один и тот же углекислый газ и в том же количестве. Для самих же "элементов" ничего подобного не известно. Они видоизменениям и взаимным превращениям не подвергаются [Весьма, в древности и доныне, распространенное представление о "единой или первичной" материи, из которой слагается все разнообразие веществ, опытом не подтверждено, и все попытки, к сему направленные, оказались его опровергающими. Алхимики верили в превращение металлов друг в друга, доказывали это разными способами, но при поверке все оказалось или обманом (особенно в отношении к производству золота из других металлов), или ошибкой и неполнотой опытного исследования. Однако нельзя не заметить, что если бы завтра оказалось, что металл А превращается целиком или отчасти в другой металл B, то из этого вовсе не будет еще следовать, что простые тела способны друг в друга превращаться вообще, как например из того, что долгое время закись урана считали за простое тело, а она оказалась содержащей кислород и действительный металлический уран — вовсе не следует делать никакого общего заключения, а можно только в частности судить о бывшей и современной степенях знакомства с ураном как самостоятельным элементом. С этой точки зрения должно взглянуть и на оповещенное Емменсом (Stephen-H. Emmens) превращение мексиканского серебра отчасти в золото (май-июнь 1897 г.), если cnpaведливость наблюдений оправдается и Argentaurum не окажется подобным алхимистическим оповещениям подобного же рода, не раз бывшим и также прикрывавшимся покровом секрета и денежного интереса. Что холод и давление могут содействовать перемене строения и свойств — давно известно, хотя бы по примеру олова Фрицше, но нет фактов, позволяющих предполагать, что изменения эти идут столь глубоко и доходят не до строения частиц, а до того, что ныне считается атомами и элементами, а потому утверждаемое Емменсом превращение (хотя бы и постепенное) серебра в золото будет оставаться сомнительным и малозначащим даже в отношении к серебру и золоту, пока, во-первых, "секрет" не будет настолько раскрыт, что опыт может быть всеми воспроизведен, и во-вторых, пока обратный переход (при накаливании и уменьшении давления?) золота в серебро не будет установлен или пока не будет установлена фактическая его невозможность или трудность. Легко понять, что переход спирта и углекислоты в сахар труден, хотя обратный идет легко, потому что сахар бесспорно сложнее спирта и углекислоты. И мне кажется очень маловероятным переход серебра в золото, если обратно — золото не будет переходить в серебро, потому что атомный вес и плотность золота чуть не в два раза больше, чем серебра, из чего должно по всему известному в химии заключить, что если серебро и золото произошли из одного материала, то золото сложнее серебра и должно превращаться в серебро легче, чем обратно. Поэтому я думаю, что г. Емменсу для убедительности не только следовало бы раскрыть "секрет", но и попробовать да и показать, если можно, превращение золота в серебро, тем более, что при получении из дорогого металла другого, в 30 раз более дешевого, денежные интересы будут, очевидно, на далеком плане, а интересы правды и истины окажутся явно на первом, теперь же дело представляется, на мой взгляд, с обратной стороны. — Д. Менделеев (Онт., 1897)], и представляют, по современным воззрениям, неизменную сущность изменяющегося (химически, физически и механически) вещества, входящую как в простые, так и в сложные тела. При таком представлении о химических элементах — они оказываются чем-то отвлеченным, так как в отдельности мы их не видим и не знаем. К такому почти идеалистическому представлению столь реалистическое знание, как химия, пришло по совокупности всего доныне наблюденного, и если это представление можно отстаивать, то лишь как предмет глубоко укоренившегося убеждения, доныне оказавшегося совершенно согласным с опытом и наблюдением. В этом смысле понятие о химических элементах имеет глубоко реальное основание во всей науке о природе, так как, например, углерод нигде, никогда, никем и нисколько не превращен в какой-либо другой элемент, тогда как простое тело — уголь — превращено в графит и алмаз и, быть может, когда-нибудь можно будет превратить его и в вещество жидкое или газообразное, если удастся найти условия упрощения сложнейших частиц угля. Главное понятие, с которым возможно приступить к объяснению П. законности, состоит именно в коренном различии представлений об элементах и о простых телах. Углерод — элемент, нечто неизменное, содержащееся как в угле, так и в углекислом газе или в светильном, как в алмазе, так и в массе изменчивых органических веществ, как в известняке, так и в дереве. Это — не конкретное тело, а весомое (материальное) вещество с суммой свойств. Как в парах воды или в снеге нет конкретного тела — жидкой воды, а есть то же весомое вещество с суммой ему одному принадлежащих свойств, так во всем углеродистом содержится материально однородный углерод: не уголь, а именно углерод [Здесь термин (слово, название) ясно выражает различие понятий об угле и углероде или о простом теле и элементе, но для многих других элементов (даже для всех почти иных) этого различия терминов не существует. Так, водородом называют как простое газообразное тело, так и элемент, содержащийся в воде и в массе других жидких, газообразных и твердых сложных тел. Можно думать, что со временем это несовершенство языка будет исправлено.]. Простые тела суть вещества, содержащие только один какой-либо элемент, и понятие о них становится прозрачно-ясным только тогда, когда признается укрепившееся представление об атомах (см.) и частицах (см.), или молекулах, из которых слагаются однородные вещества, причем понятию об элементе отвечает атом, а простому телу — частица. Простые тела, как и все тела природы, составлены из частиц: вся их разница от сложных тел состоит лишь в том, что частицы сложных тел содержат разнородные атомы двух или многих элементов, а частицы простых тел — однородные атомы данного элемента [Очевидно, что частицы только простых тел могут содержать по одному атому, у сложных же всегда 2 или более атома в частице. Это оправдывается наблюдениями над плотностями пара, теплоемкостью и т. п., но развитие этого завело бы далеко.]. Все, что излагается далее, должно относить именно к элементам, т. е. например к углероду, водороду и кислороду как составным частям сахара, дерева, воды, угля, кислородного газа, озона и т. п., но не простым телам, элементами образуемым. При этом, очевидно, появляется вопрос: как же можно находить какую-либо реальную законность в отношении к таким предметам, как элементы, существующие лишь как представления современных химиков, и что же реально осуществимое можно ожидать, как следствие из расследования каких то отвлеченностей? [Такие понятия крайнего или материалистического позитивизма, ложно нередко приписываемого естествоиспытателям, опровергаются, между прочим, чисто реальными следствиями, вытекающими из П. закона, оперирующего над воображаемыми элементами, и в этом отношении П. закон имеет свое значение тем более, что все его дело новоисторическое и касается такого реалистического предмета, какова вся современная химия, где на каждом шагу осуществляются переходы от чисто отвлеченных представлений к чисто реальному получению веществ со всеми атрибутами материальной конкретности. Здесь повторяется в сущности то же, что в геометрии или математике вообще: объект, например круг, эллипс или ряд чисел, чисто отвлеченный, а результат работы над этими отвлеченностями чисто материальный и конкретно оправдывается над явлениями астрономическими, механическими и т. п. В этом сочетании идеально-отвлеченного с реально-материальным и должно искать объяснения того, что физико-математическая область знаний занимает ныне глубочайшие умы и захватывает все более и более широкие области и кругозоры. Здесь впервые сочетались без искусственного эклектизма идеализм с материализмом, отвлеченность с конкретностью, монархически-общее с демократически-частным, стоицизм с эпикурейством, и все совершающееся показывает, что в этом направлении последует безграничное дальнейшее развитие. Упреки крайних идеалистов — в материализме естествознания — парализуются упреками тому же естествознанию со стороны крайних материалистов — в отвлеченности всех исходных точек наших знаний о природе. A несомненные успехи в познании и покорении природы вместе со скромным трудолюбием искателей истины и с их откровенным изложением всех путей, для того применяемых, ведут к всеобщему признанию и расширению области приложения способов, применяемых современным естествознанием. — Д. Менделеев.] Действительность отвечает на подобные вопросы с полной ясностью: отвлечения, если они правдивы (содержат элементы истины) и соответствуют реальности, могут служить предметом точно такого же исследования, как и чисто материальные конкретности. Так, химические элементы хотя суть отвлеченности, подлежат расследованию совершенно такому же, как простые или сложные тела, которые можно накалить, взвесить и вообще подвергать прямому наблюдению. Сущность дела здесь в том, что у химических элементов на основании опытного исследования простых и сложных тел, ими образуемых, открываются свои индивидуальные свойства и признаки, совокупность которых и составляет предмет исследования. Мы и обратимся теперь к перечислению некоторых из особенностей, принадлежащих химическим элементам, чтобы затем показать П. законность химических элементов.

Свойства химических элементов
должно разделить на качественные и количественные, хотя бы первые из них и сами по себе подлежали измерению. К числу качественных прежде всего принадлежит свойство образовывать кислоты и основания. Хлор может служить образцом первых, так как и с водородом, и кислородом образует явные кислоты, способные с металлами и основаниями давать соли, начиная с первообраза солей — поваренной соли. Натрий же поваренной соли NaCl может служить образцом элементов, дающих только основания, так как кислотных окислов с кислородом он не дает, образуя или основания (окись натрия), или перекись, обладающую характерными признаками типической перекиси водорода. Все элементы суть более или менее кислотные или основные, с явными переходами от первых ко вторым. Это качественное свойство элементов электрохимики (с Берцелиусом во главе) выразили, отличив электроотрицательные элементы, подобные хлору, от электроположительных, сходных с натрием, на основании того, что первые при разложении током появляются на аноде, а вторые на катоде. То же качественное различие элементов выражается отчасти и в различении металлов и металлоидов, так как основные элементы относятся к числу таких, которые в виде простых тел дают настоящие металлы, а кислотные элементы образуют в виде простых тел металлоиды, не имеющие вида и механических свойств настоящих металлов. Но во всех этих отношениях не только невозможно прямое измерение, позволяющее устанавливать последовательность перехода от одних свойств к другим, но и нет резких различий, так что есть элементы в том или ином отношении переходные или такие, которые можно отнести и в тот, и в другой разряд. Так, алюминий, по внешнему виду явный металл, отлично проводящий гальванический ток, в своем единственном окисле Al 2O3 (глинозем) играет роль то основную, то кислотную, так как соединяется и с основаниями (напр. Na 2O, MgO и др.), и с кислотными окислами, например образуя серно-глиноземную соль Al 2(SO4)3 = Al2O33SO3; и в том, и в другом случае он обладает слабо выраженными свойствами. Сера, образуя несомненный металлоид, во множестве химических отношений сходна с теллуром, который по внешним качествам простого тела всегда относился к металлам. Такие случаи, очень многочисленные, придают всем качественным признакам элементов некоторую степень шаткости, хотя и служат к облегчению и, так сказать, оживлению всей системы знакомства с элементами, указывая в них признаки индивидуальности, позволяющей предугадывать еще не наблюденные свойства простых и сложных тел, образующихся из элементов. Эти сложные индивидуальные особенности элементов придавали чрезвычайный интерес открытию новых элементов, не позволяя никоим образом сколько-нибудь предвидеть сумму физических и химических признаков, свойственных веществам, ими образуемым. Все, чего можно было достигнуть при изучении элементов, ограничивалось сближением в одну группу наиболее сходных, что уподобляло все это знакомство с систематикой растений или животных, т. е. изучение было рабским, описательным и не позволяющим делать какие-либо предсказания по отношению к элементам, еще не бывшим в руках исследователей. Ряд иных свойств, которые мы назовем количественными, выступил в надлежащем виде для химических элементов только со времени Лорана и Жерара, т. е. с 50-х годов текущего столетия, когда была подвергнута исследованию и обобщению способность взаимного реагирования со стороны состава частиц и укрепилось представление о двуобъемных частицах, т. е. о том, что в парообразном состоянии, пока нет разложения, всякие частицы (т. е. количества веществ, вступающие в химическое взаимодействие между собой) всех тел занимают такой же объем, какой занимают два объема водорода при той же температуре и том же давлении. Не входя здесь в изложение и развитие начал, укрепившихся при этом ныне общепринятом представлении, достаточно сказать, что с развитием унитарной, или частичной, химии в последние 4 0 или 50 лет получилась твердость, прежде не существовавшая, как в определении атомных весов (см. Вес атомов) элементов, так и в определении состава частиц простых и сложных тел, ими образуемых, и стала очевидной причина различия свойств и реакций обыкновенного кислорода О 2 и озона О 3, хотя оба содержат только кислород, как и разность маслородного газа (этилена) C 2H4 от жидкого цетена С 16 Н 32, хотя оба содержат на 12 весовых частей углерода по 2 весовых части водорода. В эту многознаменательную эпоху химии выступило в ней для каждого хорошо обследованного элемента два более или менее точных количественных признака или свойства: вес атома (см.) и тип (форма) состава частиц соединений, им образуемых, хотя ничто не указывало еще ни на взаимную связь этих признаков, ни на соотношение их с другими, особенно качественными, свойствами элементов. Вес атома, свойственный элементу, т. е. неделимое, наименьшее относительное количество его, входящее в состав частиц всех его соединений, особенно был важен для изучения элементов и составлял их индивидуальную характеристику, пока чисто эмпирического свойства, так как для определения атомного веса элемента надобно узнать не только эквивалент или относительный весовой состав некоторых его соединений с элементами, вес атома которых известен из иных определений или условно принят известным [Прежде за такой принимали водород, вес атома которого условно приняли равным 1, а ныне, как мы и придерживаемся далее, принято ради некоторых удобств считать вес атома кислорода равным 16, при чем Н = 1,008], но и определить (по реакциям, плотностям паров и т. п.) частичный вес и состав хоть одного, а лучше многих из соединений, им образуемых. Этот путь опыта столь сложен, длинен и требует такого совершенно очищенного и тщательно изученного материала из числа соединений элемента, что для многих, особенно для редких в природе элементов, при отсутствии особо побудительных причин оставалось много сомнений относительно истинной величины атомного веса, хотя весовой состав (эквивалент) некоторых соединений их и был установлен; таковы, например, были уран, ванадий, торий, бериллий, церий и др. При чисто эмпирическом значении веса атома не было и особого интереса углубляться в этот предмет для элементов, редко подвергаемых исследованию, тем не менее для большой массы обыкновеннейших элементов величины атомных весов можно было уже в начале 60-х годов считать твердо установленными, особенно после того, как Канницаро (см.) твердо установил для многих металлов, например Ca, Ba, Zn, Fe, Cu и т. п.



явное их отличие от К, Na, Ag и т. п., показав, что частицы, например, хлористых соединений первых из них содержат вдвое более хлора, чем вторых, т. е. что Са, Ва, Zn и т. д. дают CaCl 2, BaCl2 и т. д., т. е. двухатомны (двуэквивалентны, или двухвалентны), тогда как К, Na и т. п. одноатомны (одноэквивалентны), т. е. образуют KCl, NaCl и т. п. В эпоху около середины текущего столетия вес атома элементов послужил уже одним из признаков, по которым стали сличать сходственные элементы групп, например:

Галоиды:

Аналоги кислорода:

Щелочные металлы:
Фтор F = 19 Кислород О = 16 Натрий Na = 23
Хлор Cl = 35,5 Сера S = 32 Калий К = 39
Бром Br = 80 Селен Se = 78 Рубидий Rb = 85
Йод J = 127 Теллур Te = 126 Цезий Cs = 132

Другой из важнейших количественных признаков элементов представляет состав частиц высших соединений, им образуемых. Здесь более простоты и ясности, потому что Дальтонов закон кратных отношений (или простоты и цельности числа атомов, входящих в состав частиц) уже заставляет ждать только немногих чисел и разобраться в них было легче. Обобщение выразилось в учении об атомности элементов, или их валентности. Водород есть элемент одноатомный, ибо дает по одному соединению HX с другими одноатомными же элементами, представителем которых считался хлор, образуя HCl. Кислород двухатомен, потому что дает H 2 O или соединяется вообще с двумя X, если под X подразумевать одноатомные элементы. Так получают HClO, Cl 2 O и т. д. В этом смысле азот считается трехатомным, так как дает NH 3, NCl3; углерод четырехатомным, потому что образует CH4, CO2 и т. д. Сходные элементы одной группы, например галоиды, дают и сходные частицы соединений, т. е. имеют одну и ту же атомность. Через все это изучение элементов очень сильно двинулось вперед. Но было немало трудностей разного рода. Особую трудность представили соединения кислорода, как элемента двухатомного, способного замещать и удерживать X 2, в силу чего совершенно понятно образование Cl 2 O, HClO и т. п. соединений с одноатомными элементами. Однако тот же кислород дает не только HClO, но и HClO 2, HClO3 и HClO 4 (хлорная кислота), точно так же, как не только Н 2 O, но и H 2O2 (перекись водорода). Для объяснения пришлось признать, что кислород, в силу своей двухатомности обладая двумя средствами (как говорят), способен втиснуться в каждую частицу и встать между всякими двумя атомами, в нее входящими. Трудностей при этом получилось много, но остановимся на двух, по-моему, важнейших. Во-первых, оказалась как бы грань О 4 для числа кислородных атомов, входящих в частицу, а этой грани нельзя ждать на основании допущенного. При этом, приближаясь к грани, получались часто соединения не менее, а более прочные, чего уже вовсе нельзя допустить при представлении о втиснутых атомах кислорода, так как чем более их взойдет, тем вероятнее было иметь непрочность связей. А между тем HClO 4 прочнее HClO 3, эта последняя прочнее HClO 2 и HClO, тогда как HCl опять тело химически очень прочное. Грань же О 4 выступает в том, что водородным соединениям разной атомности: HCl, H 2S, H3 P и H 4 Si отвечают высшие кислородные кислоты: HClO 4, Н 24, H3PO4 и H 4SiO4, в которых одинаково содержатся четыре атома кислорода. Из этого даже выходит тот неожиданный вывод, что считая H — одно-, а O — двухатомными элементами, по кислороду способность к соединению выходит обратная, чем по водороду, так как безводные окислы, отвечающие выше написанным кислотам, суть:
  Cl2O7, S2O6, P2O5 и Si2O4
или   SO3   SiO2,

т. е. по мере того, как у элементов увеличивается свойство удерживать атомы водорода или возрастать в атомности, уменьшается способность удерживать кислород; хлор, так сказать, одноатомен по водороду и семиатомен по кислороду, а фосфор или аналогический с ним азот трехатомен в первом смысле, а во втором — пятиатомен, что видно и по другим соединениям, например NH 4Cl, POCl3, PCl и т. п. Во-вторых, все, что знаем, явно указывает на глубочайшее различие в присоединении кислорода (втискивании его, судя по представлению об атомности элементов) в том случае, когда образуется перекись водорода, от того, когда происходит, например, из H 2SO8 (сернистая кислота) серная кислота H 2SO4, хотя H 2O2 отличается от H 2 O точно так же атомом кислорода, как H 2SO4 от H 2SO3, и хотя раскислители в обоих случаях переводят высшую степень окисления в низшую. Разность в отношении к реакциям, свойственным H 2O2 и Н 24, особенно выступает по той причине, что серной кислоте отвечает своя перекись (надсерная кислота, аналог которой, надхромовая, недавно изучена Wiede и содержит, по его данным, H 2CrO5), обладающая совокупностью свойств перекиси водорода. Значит, есть существенная разность в способе присоединения кислорода в "солеобразных" окислах и настоящих перекисях (о чем см. далее), и, значит, простым втискиванием атомов кислорода между другими выражать все случаи присоединения кислорода недостаточно, а если выражать, то скорее всего это следует применять к перекисям, а не к образованию, так сказать, нормальных соединений кислорода, приближающихся к RH n О 4, где n, число атомов водорода, не бывает более 4, как и число атомов кислорода в кислотах, содержащих один атом элементов R. Приняв сказанное во внимание и означая вообще через R атом элементов, вся совокупность сведений о солеобразных окислах приводится к тому выводу, что число самостоятельных форм или видов окислов очень невелико и ограничивается следующими восьмью:
R2O например K2O, Ag2O.
R2O2 или RO например CaO, FeO.
R2O3 например Al 2O3, N2O3.
R2O4 или RO 2 например CO 2, SiO2.
R2O5 например N 2O5, P2O5.
R2O6 или RO 3 например SO 3, CrO3.
R2O7 например Cl 2O7, Mn2O7.
R2O8 или RO 4 например OsO 4, RuO4.

Эта стройность и простота форм окисления вовсе не вытекает из учения об атомности элементов в его обычной форме (при определении атомности по соединению с H или Cl) и есть дело прямого сличения кислородных соединений самих по себе. Вообще учение о постоянной и неизменной атомности элементов заключает в себе трудности и несовершенства (ненасыщенные соединения, подобные CO, пересыщенные, подобные ICl 3, соединения с кристаллизационной водой и т. п.), но оно в двух отношениях имеет и поныне важное значение, а именно с ним достигнута простота и стройность выражения состава и строения сложных органических соединений и в отношении к выражению аналогии родственных элементов, так как атомность, по чему бы ее ни считали (или состав частиц сходственных соединений), в таком случае оказывается одинаковой. Так, например, сходные между собой во многом ином галоиды или же металлы данной группы (щелочные, напр.) оказываются всегда обладающими одинаковой атомностью и образующими целые ряды сходных соединений, так что существование этого признака есть уже до некоторой степени указатель аналогии.


Чтобы не усложнять изложения, мы оставим перечисление других качественных и количественных свойств элементов (напр. изоморфизма, теплот соединений, показателей преломления и т. п.) и прямо обратимся к изложению П. закона, для чего остановимся: 1) на сущности закона, 2) на его истории и приложении к изучению химии, 3) на его оправдании при помощи вновь открытых элементов, 4) на приложении его к определению величины атомных весов и 5) на некоторой неполноте существующих сведений.


I. Сущность П. законности. Так как из всех свойств химических элементов атомный их вес наиболее доступен для численной точности определения и для полной убедительности, то исходом для нахождения законности химических элементов всего естественнее положить веса атомов, тем более, что в весе (по закону сохранения масс) мы имеем дело с неуничтожаемым и важнейшим свойством всякой материи. Закон есть всегда соответствие переменных, как в алгебре функциональная их зависимость. Следовательно, имея для элементов атомный вес как одну переменную, для отыскания закона элементов следует брать иные свойства элементов, как другую переменную величину, и искать функциональные зависимости. Взяв многие свойства элементов, например их кислотность и основность, их способность соединяться с водородом или кислородом, их атомность или состав их соответственных соединений, теплоту, выделяемую при образовании соответственных, например хлористых, соединений, даже их физические свойства в виде простых или сложных тел сходного состава и т. п., можно подметить периодическую последовательность в зависимости от величины атомного веса. Для того, чтобы это выяснить, приведем сперва простой список всех, хорошо ныне [Не помещены мной, по сомнительности данных (напр. для тербия) или по причине неуверенности в самом существовании отдельных элементов (особенно это относится к различию неодима от празеодима, которые отвечают обыкновенно признаваемому дидиму), следующие элементы из числа указанных в своде Кларка:
Неодимий
140,80
Празеодимий
143,60
Самарий
150,26
Гадолиций
156,76
Тербий
160,00
Ербий
166,32
Тулий
170,70

Все эти очень редкие и трудновыделяемые элементы по величине их атомного веса помещаются между церием и иттербием, также редкими, но лучше изученными элементами. В отношении к ним, сверх всего прочего (особенно же: самостоятельности, т. е. отсутствия смешений), подлежит сомнению и самый состав окислов R 2O3, так как он, и то лишь по П. законности, установлен только для следующих редких элементов: Ce, Y, La и Yb, и распространять этот вывод на все другие преждевременно. По отношению же к аргону и гелию, также не приведенным в таблице, должно заметить, во-первых, что и Кларк не дает для них атомного веса в своем своде, во-вторых, что оба они хотя несомненны в отношении существования (Релей и Рамзай), до сих пор не введены ни в одно соединение, без чего нельзя говорить о весе атомов, и, в-третьих, — для них по плотности газа известен лишь частичный вес: аргона около 2.19,9, а гелия около 2.2,1, а потому, считая (на основании данных о физических свойствах), что в частицах аргона и гелия содержится по одному атому, можно полагать их атомный вес равным: для аргона 39,8 и для гелия 4,2, но полной уверенности в этом быть не может, пока не будут получены их соединения, и до тех пор нет никакого основания входить в ближайшее обсуждение места этих элементов в среде других и этим способом усложнять изложение П. законности. — Д. Менделеев.] известных определений атомного веса элементов, руководясь недавним сводом, сделанным F. W. Clarke ("Smithsonian Miscellaneous Collections", 1075: "A recalculation of the atomic weights", Вашингтон, 1897, стр. 364), так как его ныне должно считать наиболее достоверным и содержащим все лучшие и новейшие определения. При этом примем вместе с большинством химиков условно атомный вес кислорода равным 16. Подробное исследование "вероятных" погрешностей показывает, что примерно для половины приведенных результатов погрешность чисел менее 0,1%, но для остальных она доходит до нескольких десятых, а для иных, быть может, и до процентов. Все атомные веса приведены по порядку их величины.

Ряды

O = 16

Ат. веса

Ряды

O = 16

Ат. веса

1
Водород
H

1,008

6
Рубидий
Стронций
Иттрий
Цирконий
Ниобий
Молибден

Rb
Sr
Y
Zr
Cb или Nb
Mo

85,43
87,61
89,02
90,40
93,73
95,99

2
Литий
Бериллий
Бор
Углерод
Азот, Az или
Кислород
Фтор

Li
Gl или Be
B
C
N
O
F

7,03
9,08
10,95
12,01
14,04
16
19,06
  Рутений
Родий
Палладий

Ru
Rh
Pd

101,68
103,01
106,36

3
Натрий
Магний
Алюминий
Кремний
Фосфор
Сера
Хлор

Na
Mg
Al
Si
P
S
Cl

23,05
24,28
27,11
28,40
31,02
32,07
35,45

7
Серебро
Кадмий
Индий
Олово
Сурьма
Теллур **)
Йод **)

Ag
Cd
In
Sn
Sb
Te
I

107,92
111,95
113,85
119,05
120,43
127,49
126,89

4
Калий
Кальций
Скандий
Титан
Ванадий
Хром
Марганец

K
Ca
Sc
Ti
V
Cr
Mn

39,11
40,07
44,12
48,15
51,38
52,14
54,99

Часть 8 ряда
Цезий
Барий
Лантан
Церий

Cs
Ba
La
Ce

132,89
137,43
138,64
140,20

Часть 10 ряда
Иттербий
Тантал
Вольфрам

Yb
Ta
W

173,19
182,84
184,83
  Железо
Кобальт *)
Никель *)

Fe
Co
Ni

56,02
58,93
58,69
  Осмий
Иридий
Платина

Os
Ir
Pt

190,99
193,12
194,89

Часть 11 ряда
Золото
Ртуть
Таллий
Свинец
Висмут

Au
Hg
Tl
Pb
Bi

197,23
200,00
204,15
206,92
208,11

5
Медь
Цинк
Галлий
Германий
Мышьяк
Селен
Бром

Cu
Zn
Ga
Ge
As
Se
Br

63,60
65,41
69,91
72,48
75,01
79,02
79,55

Часть 12 ряда
Торий
Уран

Th
U

232,63


239,59


*)
П. законность дает повод утверждать, что атомный вес кобальта менее, чем никеля, но большинство существующих определений, показывая, что атомные веса Co и Ni очень близки, все же заставляют доныне приписывать кобальту несколько больший вес атома. Можно, однако, полагать, что способы отделения и приемы для определения состава не довольно доныне точны и что более точные определения дадут для Co меньший вес, чем для Ni.


**) Точно так же, как для Ni и Co, для теллура и йода П. законность заставляет ждать при новых, более точных определениях, что атомный вес теллура будет менее, чем йода. Вероятнее всего доныне, как и утверждает Браунер, что в теллуре есть поныне не отделенная подмесь элемента с большим атомным весом, но нельзя также не высказать пожелания, чтобы атомный вес йода был вновь проверен, что, быть может, приведет к необходимости увеличения его атомного веса.


В этом сопоставлении уже намечена П. законность, и она выражена в рядах, каждый из которых содержит до некоторой степени явное периодическое повторение одних и тех же количественных и качественных свойств элементов, особенно примечаемое тогда, когда взяты целые периоды (большие), содержащие один четный ряд и следующий за ним нечетный. Так, ряд 2-ой начинается Li — металлом щелочным и в соединении с рядом 3-м образует период, кончающийся галоидом Cl с явно кислотными свойствами представителя металлоидов. Точно так же в следующем большом периоде, содержащем 4-ый и 5-ый ряды, началом служит щелочной металл K, а концом галоид Br; в периоде, содержащем 6 и 7 ряды, опять в начале щелочной металл Rb, а в конце галоид йод. Следующий период, начинаясь опять явно щелочнометаллическим цезием, очевидно не полон, а в следующих периодах известны лишь некоторые средние элементы, но ни начальные щелочные металлы, ни конечные галоиды не известны. Если взять один из полных периодов, например (4 и 5 ряды) начинающийся калием и кончающийся бромом, то можно здесь подметить прежде всего содержание двух рядов с возрастающей, судя по кислородным соединениям, атомностью входящих элементов. Притом это возрастание по отношению к кислороду идет в каждом ряде совершенно последовательно




"БРОКГАУЗ И ЕФРОН" >> "П" >> "ПЕ" >> "ПЕР" >> "ПЕРИ"

Статья про "Периодическая законность химических элементов" в словаре Брокгауза и Ефрона была прочитана 741 раз
Коптим скумбрию дома в коробке
Коптим скумбрию дома в коробке

TOP 15