БНБ "БРОКГАУЗ И ЕФРОН" (121188) - Photogallery - Естественные науки - Математика - Технология
|
Олово, химический элементОпределение "Олово, химический элемент" в словаре Брокгауза и Ефрона
Олово, химический элемент (лат. Stannum; франц. Etain, нем. Zinn; химическое обозначение Sn.) — принадлежит к числу металлов, известных человечеству с глубокой древности. Египтяне знали его за 3000-4000 лет до Р. Х. и о нем говорится в Библии. В природе О. находится главным образом в виде кислородного соединения SnO 2 — оловянного камня (см.), реже встречается в виде сернистого О. в соединении с сернистым железом или медью. О. имеет серебристо-белый цвет, но темнее серебра. Оно немного тверже свинца и очень тягуче — при вальцевании дает чрезвычайно тонкие листы, но проволока из него легко рвется. В обыкновенных условиях оно имеет ясно кристаллическую структуру. При сгибании палочки О. слышится характерный звук, который объясняется разрывами в кристаллической массе. Хорошо образованные кристаллы О. легко получить, разлагая слабым током, например раствор хлористого О. в воде (см. ниже); проще получаются они, если на крепкий раствор хлористого О., подкисленный соляной кислотой, налить осторожно воды (так, чтобы она не смешалась с раствором) и погрузить сюда оловянную пластинку — на ней начнут расти кристаллы около слоя, разделяющего жидкости. По мере образования, кристаллов, пластинка в нижней части будет растворяться. Кристаллы, по-видимому, принадлежат к правильной системе. О. плавится при 228°-232°, а перед тем (около 100°) становится хрупким, кипит от 1460° до 1600°, по различным данным. Коэффициент расшир.: лин. между 0° и 100° = 0,00002193 (Кальверт-Джонсон), куб. — V = VО (l + 0,000061t + 0,0000000789t2) (Маттисен); удельный вес кованного О. = 7,3, кристаллического = 7,18. Теплоемкость 0,05623 (Реньо). Теплопроводность 14,5-15,4 (для серебра = 100). Электропроводность = 11,45 при 21° (Маттисен) (для серебра = 100). Интересно действие на О. низкой температуры. В Сибири было замечено, что в большие морозы на оловянной посуде появляются серые пятна, которые постепенно растут. В этих местах О. делается ломким, легко продырявливается. Фричше охлаждал О. до —35° и показал, что при этом кристаллическая структура его изменяется и теряется связность между его частицами. При нагревании (у Фричше до 35°) такое О. переходит в обыкновенное. Удельный вес измененного О.= 5,952 (Фричше), так что перемена состояния сопровождается большим увеличением объема; теплоемкость найдена 0,0545 (Реньо) — тоже меньше, чем для обыкновенного О. При обыкновенной температуре О. почти не изменяется в сухом или влажном воздухе; растворы солей и очень слабые кислоты мало на него действуют; благодаря этому его и применяют для предохранения других металлов (см. Лужение). При нагревании О. дает окись SnO 2; пары его горят белым пламенем. Крепкая соляная кислота, в особенности при нагревании, легко растворяет О. с выделением водорода и образованием хлористого О. SnCl 2; растворение идет лучше в присутствии платины вследствие образования гальванической пары. Серная кислота тоже растворяет О., при этом, в зависимости от крепости кислоты, нагревания и пр. происходит раскисление кислоты: выделяется сернистый газ, сероводород, сера, но получается и водород. Азотная кислота очень крепкая на О. не действует, более слабая, например удельного веса 1,4, энергично окисляет его: выделяются окислы азота и образуется нерастворимая метаоловянная кислота; если азотная кислота слаба и действие происходит медленно и на холоде, то О. переходит в раствор — образуется азотнокислая соль О., аммиак и гидроксиламин. Хлор, бром, йод прямо соединяются с О., с металлами оно дает сплавы. При накаливании О. разлагает воду. Атомный вес О. около 118 (Мейер-Цейберт считают 117,37; Ван дер Плаатс — 118,07 и пр.). В периодической системе элементов О. помещается в IV группе, в нечетном ряду, вместе с кремнием, германием и свинцом. Подобно им, оно дает, главным образом, два ряда соединений вида SnX 2 и SnX 4; здесь также закись SnO имеет характер слабого основания и окись SnO 2 — характер слабой кислоты. Для О. известны соединения и промежуточного типа, Sn 2X6, a с кислородом О. дает также и SnO 3.
С металлами О. дает многочисленные сплавы, в особенности известны сплавы с медью (см. Бронза). Многие из них замечательны тем, что плавятся при очень низкой температуре, например сплав д'Арсе (2 части висмута, 1 часть О. и 1 часть свинца), плавится при 90°; сплав Розе (8 частей висмута. 3 части Sn и 8 частей свинца) — при 95°; наконец, Вуда (15 частей висмута, 4 части Sn, 8 частей свинца, 3 части кадмия) — при 68° и пр. При анализе О. определяется в виде SnO 2.
Металлоорганические соединения О. (оловянно-органические или станнорганические соединения, станналкилы) отвечают типам SnX 2 и SnX 4, соответственно закиси и окиси О. и, сверх того, еще промежуточному типу Sn 2X6. Являясь по форме в типах SnX 4 и Sn 2X6 аналогами соответственных соединений углерода и кремния, соединения О. обнаруживают явственные отличия, обусловленные металлической натурой этого элемента, и по своему характеру приближаются к настоящим металлоорганическим соединениям (см.). В самом деле, в них уже нет той прочной связи атома Sn с углеродными атомами, какая наблюдается для кремния в его органических соединениях, так что при действии свободных галоидов вместо замещения водорода углеводородных остатков, как это имеет место в соединениях кремния, в оловянных соединениях происходит отщепление самых остатков, например: Sn(CH 3)4 + I2 = Sn(CH3)3I + CH3 I. То же самое, хотя и труднее, происходит даже при нагревании с крепкой соляной кислотой, например: Sn(C 2H5)4 + HCl = Sn(C2H5)3Cl + C2H6. Образуются станналкилы при действии йодистых алкилов на О., взятое в виде тонкого порошка, или на сплавы О. с натрием или цинком. При действии на чистое О. или на О. с малой примесью натрия преимущественно получаются соединения с двумя углеводородными остатками, вида Sn(R) 2I2, например Sn(C 2H5)2I2. В присутствии большего количества натрия образуются соединения Sn(R) 3 I и Sn(R) 4. Последние весьма удобно получаются также при действии цинкорганических соединений на хлористое О., например: 2SnCl 2 + 4Zn(C2H5)2 = Sn(C2H5)4 + Sn + 4ZnCl(C2H5). Действуя цинкорганическими соединениями на вышеупомянутые йодистые соединения, можно, между прочим, получать станналкилы с различными углеводородными радикалами в составе, например Sn(C 2H5)2I2 + Zn(CH3)2 = Sn(C2H5)2(CH3)2 + ZnI2. Станнтриэтил Sn 2(C2H5)6 или (C 2H5)3Sn — Sn(C2H5)3 получается (аналогично какодилу; см.) при действии натрия на Sn(C 2H5)3 I по уравнению: 2Sn(C 2H5)3 I + 2Na = (С 2H5)3Sn.Sn(C2 Н 5)3 + 2NaI; станндиэтил (Sn(C 2 Н 5)2)x — при действии цинка на соединения Sn(C 2H5)2 Х 2 в водном растворе или, вместе с Sn 2 (С 2H5)6, при действии йодистого этила на сплав О. с большим избытком Na. Станнтетраэтил, кроме вышеуказанных способов, получается еще при нагревании до 150° станндиэтила: 2Sn(C 2H5)2 = Sn(C2H5)4 + Sn. Высшие соединения О. SnR 4 представляют тяжелые, бесцветные, со слабым эфирным запахом жидкости, перегоняющиеся без разложения и нерастворимые в воде. Станнтетраметил Sn(CH 3)4 кипит при 78°, удельный вес 1,314 (0°). Станнтетраэтил Sn(C 2H5)4 кипит при 181°, удельный вес 1,187 (23°). Однойодистые соединения Sn(R)3 I также жидки, бесцветны и летучи, обладают острым запахом и еще большим удельным весом. Sn(СН 3)3 кипит при 170°, удельный вес 2,143 (0°). Sn(C 2H5)3 I кипит при 231°, удельный вес 1,833 (22°), немного растворимо в воде. При действии щелочей они дают гидраты окисей Sn(R)3 (OH), кристаллические вещества, летучие с парами воды, растворимые в воде с сильно щелочной реакцией и с кислотами способные образовывать соли. Sn(C 2H5)3 (OH) кипит при 272° и плавится при 44. Из отвечающих им солей (Sn(CH3)3)SO4 легко растворима в воде, Sn(C 2H5)3 Cl представляет застывающее на холоде масло пронзительного запаха. Sn(C 2 Н 5)3 Br кипит при 222-224°, (Sn(C 2H5)3)2SO4 — трудно растворимые в воде бесцветные призмы. При перегоне однойодистых соединений с этилатом натрия получены производные, отвечающие простым эфирам, например Sn(C2H5)3(OC2H5), кипящее при 190-192°. Двуйодистые соединения Sn(R)2I2 кристалличны, растворимы в воде, особенно в горячей. Sn(СН 3)2I 2 — призмы желтого цвета, плавятся при 30°, кипят при 228°. Sn(C 2 Н 5)2I2 — бесцветные призмы, плавятся при 44,5°, кипят при 245°. При действии аммиака они дают белые, аморфные, нерастворимые в воде осадки окисей Sn (СН 3)2 O и Sn (С 2 Н 5)2 O, которые с кислотами (соляной, серной, уксусной и др.) дают растворимые в воде и хорошо кристаллизующиеся соли, например Sn(CH 3)2.Cl2 (плавится 90°, кипит 188-190°), Sn(C 2H5)Cl2 (кипит при 220°), Sn(C 2H5)2.SO4, Sn(CН 3)2 (С 2H3O2)2. Станнтриэтил Sn2(C2H5)6 представляет пронзительного запаха жидкость, удельного веса 1,412 (0°), кипящую при 270°, нерастворимую в воде. Плотность пара ее отвечает написанной формуле. Как вещество промежуточного типа, станнтриэтил легко переходит в соединения высшего типа, соединяясь с галоидами, кислородом, а также при действии соляной кислоты, причем происходит разрушение связи между оловянными атомами, например: (C2H5)3Sn. Sn(C2H5)3 + I2 = Sn(C2H5)3I + Sn(C2H5)3I. Станндиэтил (Sn(C2H5)2)x представляет густое, тяжелое, желтоватое масло, нерастворимое в воде, на воздухе быстро окисляется, образуя Sn(C 2H5)2 O, а с галоидами тотчас соединяется, переходя в соответствующие соединения высшего типа. Соединения О. с другими радикалами (C 3H7, C4H9, C5H11) также получены и изучены Кагуром, Демарсэ и Гриммом. Изучение вышеописанных соединений принадлежит Кагуру, Франкланду, Ладенбургу, Лёвигу, Буктону, Штреккеру и др.
Олово (техн.). Древнееврейское Bedil, встречающееся в Ветхом Завете, переводилось греками в III столетии до Р. Х. словами κασσίτερος, иногда μόλιβδος, переводимые Плинием соответственно plumbum album или candidum и plumbum nigrum, отвечающими нашим "О." и "свинец". Можно сказать почти утвердительно, что Bedil евреев, κασσίτερος и μόλιβδος — не чистые металлы, а сплавы. Так, в IV в. до Р. Х. Аристотель упоминает о кельтийском κασσίτερος, как о весьма легкоплавком металле, плавящемся даже в воде — очевидно сплаве. Под латинским stannum до IV в. нашей эры всегда понимали сплав; это выражение употребляется Плинием в том же смысле; но с IV в. под stannum всегда понимается О. В VIII в. Гебер уже хорошо знаком с характерным звуком, издаваемым О. при его сгибании. Алхимики называют О. diabolus metallorum, но чаще Juppiter. Первым местом добычи О. следует считать Корнваллис и Девоншир. Впоследствии стали О. добывать в Испании и на Канарских островах; в XIII в. добыча О. развилась и в Германии; в XVI в. появляется на рынке ост-индское О. По Аристотелю, в древнейшие времена из О. чеканили монету; во времена римского владычества в Англии изготовляли из О. сосуды. При Генрихе VIII цена О. равнялась цене серебра. О лужении упоминается уже Плинием; в XIII в. во Франции лудили медную церковную утварь. Лужение железа, изобретенное в Богемии, в 1620 г. применено в Саксонии, в 1670 г. в Англии.
Сернистое О. или станнит заключает 27,7% О., 20% Cu; удельный вес = 4,35. Белая оловянная руда — оловянный силикат с небольшим содержанием глинозема. Добыча О. из оловянного камня основана на восстановляющем действии угля и окиси углерода при белокалильном жаре. Чистота и выход производимого металла, а также правильный ход восстановительного процесса (отсутствие настылей) находятся в прямой зависимости от степени обогащения руды, поэтому необходимо возможно полное удаление пустой породы от руды, что достигается отчасти механическим путем, отчасти химическим (обжиг, выветривание). В Корнваллисе руда измельчается до величины кулака (spalling), сортируется на: богатую (best-work), бедную (common или poor-work) и горы (wost или halvon). При этом отделяют бедную породу. Богатая руда подвергается дальнейшей обработке отдельно. Руда измельчается в толчеях и сплавляется в систему канав и зумфы; с первых получается мука (crop), из вторых шлам (slimes). Мука обрабатывается в неподвижных вашгердах, в круглых вашгердах и в чанах, причем получается богатый и бедный шлих. Первый направляется в канавы, второй в колодцы; промывая их вновь, получают куски для толчей и шлам. Для подготовки последних служат дополнительные приборы (box), канавы с мешальными приспособлениями, планвашгедры и отсадочные машины. Богатый шлих от обработки муки и шлама содержит весьма мало породы, но почти весь вольфрам, большую часть сернистого мышьяка и значительное количество медного колчедана; для их удаления прибегают к обжигу руды. Отделение оловянного камня от сопровождающей его пустой породы основано на большем удельном весе первого относительно второго; сопровождающая камень порода тверже самого камня, а потому при измельчении руды в толчеях получаются более мелкие куски камня и более крупные куски породы, почему при дальнейшей промывке происходит весьма неполное отделение камня от пустой породы. Во избежание этого, ход подготовки руды в Klleder в Плермелле изменен, а именно: руда подымается на чердачное помещение здания, выбрасывается на грохот, которым удерживаются куски в 1,9-2,5 см., поступающие в дробилку (Steinbre c her); куски, прошедшие дробилку и грохот, поступают на второй грохот; удержанные куски проходят через валки, затем вместе с кусками, прошедшими через второй грохот, попадают в яму, откуда подымаются черпаками в сортировочный барабан, с тремя величинами отверстий; барабан этот расположен под самой крышей. Струя воды, обмывая барабан, удаляет шлам вместе с мельчайшими частицами; крупные части выходят в открытый конец барабана и вновь поступают в валки. Таким образом, получаются три сорта частиц: крупные, средние, мелкие и еще шлам. Средние и мелкие сортируются отдельно на отсадочных грохотах. Крупные идут в выплавку. Мелкие должны быть отделены от шлама до поступления на отсадочные грохоты, что достигается воронкообразными ящиками Ритинга (Spitzlutte). Мелкие же частицы поступают на мельницу (Scheibenm ü lle Геберле). Эта мельница имеет то преимущество перед прочими, что дает наименьшее количество шламов. Расстояние между дисками мельницы регулируется винтами и резиновыми буферами по наименьшему размеру кусков руды так, чтобы расстояние между дисками по периферии несколько превышало размер наименьшего зерна руды. Ось вращения диска полая, через нее вводится руда с водой. Расстояние между дисками в середине больше, чем по периферии; вследствие центробежной силы куски руды отбрасываются к периферии, претерпевая последовательное измельчение, причем, так как сцепление между породой и рудой меньше их частичного сцепления, сперва происходит отделение руды от породы, а затем уже измельчение обеих. Пользуясь этой мельницей, достигают большей или меньшей одинаковости величины частиц как руды, так и породы; образование шлама обусловлено лишь трением частиц друг об друга; вследствие центробежной силы вода отбрасывается к периферии и засасывает новые количества руды через полую ось. Мелкие массы и шлам поступают в воронкообразные ящики и круглые вашгерды, причем дается предпочтение стоячему вашгерду с подвижным очистителем; производительность одного такого вашгерда в 6 раз больше вашгерда с подвижным столом. Руды, добываемые из россыпей, после такого рода механического обогащения, как более чистые, подвергаются прямо процессу восстановления. Жильные же руды должны быть предварительно обожжены. При обжигании железный колчедан превращается в окись железа с выделением сернистой кислоты. Медный колчедан обращается в смесь окиси и сернокислой меди; оловянный камень остается почти без перемены, за исключением небольшой части, переходящей в сернокислую закись О.; висмут переходит в окись висмута; сернистый мышьяк сгорает с выделением сернистой и мышьяковистой кислот. Получающееся также при этом мышьяковокислое железо довольно постоянно при высоких температурах; для его разложения добавляют уголь, причем оно разлагается на мышьяковистую кислоту и окись железа, с выделением углекислоты. Благодаря этим реакциям, мышьяк и большая часть серы улетучиваются в виде мышьяковистой и сернистой кислот, примесь посторонних металлов переходит частью в растворимые сернокислые соли, которые удаляются при промывке, а частью обращается в окислы, соединения более легкие по удельному весу. В саксонских оловянных рудниках обжиг руды ведется в печах, в которых вредные газы, выделяющиеся из рабочего отверстия во время шурования, вытягиваются через трубу; летучие вещества, образующиеся во время обжига, идут через канал в камеру, в которой происходит сгущение мышьяковистой кислоты. Шлихи сушатся на своде печи. Если шлих беден мышьяком, то температуру повышают медленно, во избежание спекания массы; если же мышьяка много, то выгоднее быстро подымать температуру, дабы получить меньше мышьяковистой муки; при этом следует производить энергичное перемешивание массы. Когда температура печи доведена до надлежащей высоты, то ее вновь сбавляют до темно-красного каления и выдерживают при этой температуре до тех пор, пока выделяются белые пары, затем добавляют угля и вновь подымают температуру для выделения мышьяковистой и сернистой кислот. Продолжительность обжига зависит от количества и качества примесей. В Корнваллисе употребляются или обыкновенные отражательные печи, или печи с вращающимся подом; отражательная печь имеет эллиптический под; газы перед тем, как попасть в вытяжную трубу, проходят через канал в 2 метра высотой, с поперечными перегородками, в котором осаждается мышьяковистая кислота; очистка канала производится каждые 1-2 месяца через отверстия, замурованные во время хода печи. Предварительно печь нагревается до темно-красного каления, затем, открывая заслонку в своде печи, в нее сталкивают высушенную на своде руду; перемешивание производят через каждые 20-30 мин. Обжиг кончают, когда перестанут показываться светящиеся места и прекратится выделение белых паров. При большем содержании мышьяка приходится повторять обжиг после промывки массы. Промывкой водою удаляется сернокислая медь, которая затем восстановляется из раствора железом; промывкой соляной кислотою удаляются окислы железа и висмута. Вольфрам иногда удаляют по способу Океланда, сплавляя обожженную руду с определенным количеством соды, причем образуется вольфрамово-кислый натр, растворимый в воде. Выделение вольфрама произ
Статья про "Олово, химический элемент" в словаре Брокгауза и Ефрона была прочитана 2429 раз |
TOP 15
|
|||||||||||||||||