БНБ "БРОКГАУЗ И ЕФРОН" (121188) - Photogallery - Естественные науки - Математика - Технология
|
Наименьшие квадратыОпределение "Наименьшие квадраты" в словаре Брокгауза и Ефрона
Наименьшие квадраты — Под названием способа Н. квадратов разумеют прием, посредством которого вычисляются результаты из совокупности многих однородных наблюдений. Числа, получаемые из наблюдений, связаны с искомыми величинами уравнениями, вид которых определяется в каждом данном случае соответствующими теоретическими изысканиями, и решение которых может быть исполнено по известным правилам алгебры. При этом каждому наблюдению соответствует некоторое уравнение. Если бы наблюдения были абсолютно точны, то и искомые величины получались бы с совершенной точностью, независимо от числа уравнений, доставляемых наблюдениями. В действительности же наблюдения, сделанные даже самыми лучшими измерительными приборами подвержены так назыв. случайным ошибкам, и потому результаты, получаемые решением той или другой системы уравнений, оказываются различными. Когда искомая величина может быть измерена непосредственно, как, например, длина прямой или угол, то, для увеличения точности, измерение производится много раз, и за окончательный результат берут арифметическое среднее из всех отдельных измерений. Это правило арифметической середины основывается на соображениях теории вероятности; легко показать, что сумма квадратов уклонений отдельных измерений от арифметической середины будет меньше, чем сумма квадратов уклонений отдельных измерений от какой бы то ни было другой величины. Само правило арифметической середины представляет, следовательно, простейший случай способа Н. квадратов. Большие затруднения представляются при определении из наблюдений величин, которые не могут быть измерены непосредственно. Если, например, желают определить элементы орбиты планеты или кометы, то светила эти наблюдаются несколько раз, и в результате получают лишь координаты их (склонение и прямое восхождение) в известные времена; самые же элементы выводятся затем решением уравнений, связывающих наблюдаемые координаты с элементами орбиты планеты или кометы. При этом, если бы число уравнений равнялось числу неизвестных, то для каждой неизвестной получилась бы одна определенная величина; если же число уравнений больше числа неизвестных, то, вследствие ошибок наблюдений, результаты решений отдельных групп этих уравнений в различных сочетаниях оказываются не совсем согласными между собой. До начала XIX в. ученые не имели определенных правил для решения системы уравнений, в которой число неизвестных менее числа уравнений; до этого времени употреблялись частные приемы, зависевшие от вида уравнений и от остроумия вычислителей, и потому разные вычислители, исходя из тех же данных наблюдений, приходили к различным выводам. Лежандру и Гауссу принадлежит первое применение к решению указанной системы уравнений теории вероятности, исходя из начал, аналогичных с началом арифметической середины, уже издавна и, так сказать, бессознательно применяемых к выводам результатов в простейшем случае многократных измерений. Как и в случае арифметической середины, вновь изобретенный способ не дает, конечно, истинных значений искомых, но дает зато вероятнейшие значения. Этот способ распространен и усовершенствован дальнейшими изысканиями Лапласа, Энке, Бесселя, Ганзена и др. и получил название способа Н. квадратов, потому что после подстановки в начальные уравнения неизвестных величин, выведенных этим способом, в правых частях уравнений получаются если и не нули, то небольшие величины, сумма квадратов которых оказывается меньшей, чем сумма квадратов подобных же остатков, после подстановки каких бы то ни было других значений неизвестных. Помимо этого, решение уравнений по способу Н. квадратов дает возможность выводить вероятные ошибки неизвестных, т. е. дает величины, по которым судят о степени точности выводов. Пусть дано решить систему уравнений
.
.
Уравнения (1) представляют систему линейных уравнений, т. е. уравнений, в которых все неизвестные входят в первой степени. В большинстве случаев уравнения, связывающие наблюдаемые и искомые величины, бывают высших степеней и даже трансцендентные, но это не изменяет сущности дела: предварительными изысканиями всегда можно найти величины искомых с таким приближением, что затем, разложив соответствующие функции в ряды и пренебрегая высшими степенями искомых поправок, можно привести любое уравнение к линейному. О подробностях теории способа Н. квадратов, равно как и о приложениях этого способа к вычислению наблюдений, см. Маевский, "Изложение способа Н. квадратов" (СПб., 1881); Liagre, "Calcul des probabilit és et thé orie des erreurs" (Брюссель, 1879); Wright, "A treatise on the adjustment of observations" (Нью-Иорк, 1884), а также сочинения, указанные в статье Вероятная ошибка.
Статья про "Наименьшие квадраты" в словаре Брокгауза и Ефрона была прочитана 1150 раз |
TOP 15
|
|||||||