БНБ "БРОКГАУЗ И ЕФРОН" (121188) - Photogallery - Естественные науки - Математика - Технология
|
МатематикаОпределение "Математика" в словаре Брокгауза и ЕфронаМатематика — Слово "математика" происходит от греческого μάθημα (наука, учение), в свою очередь происходящего, вместе с имеющим одно с ним значение словом μάθησις, от глагола μανθάνω, первоначальное значение которого, "учусь через размышление", устанавливало строгое разграничение между выражаемым им понятием и понятием учения путем опыта. М., по обычным, установившимся с давнего времени, взглядам, есть наука о величинах, предмет которой состоит в измерении величин, или, согласно с поправкой, внесенной Огюстом Контом, в непрямом измерении величин. Такое определение если и может считаться удовлетворительным, то только для отдаленного прошлого, когда задачи М. не шли далее практических искусств счета и измерения протяжений. Но уже с IV в. до Р. Х. практическая арифметика, под именем "логистики", и практическая геометрия, в форме землемерия, потеряли почти всякий интерес в глазах математиков древней Греции, и на первый план выдвинулись для них изучение свойств протяжений, или теоретическая геометрия, и в меньшей степени изучение свойств чисел, или, по терминологии нашего времени, теория чисел. По определению Вильгельма Вундта, вполне выражающему современное состояние М., ее предмет состоит в задаче "подвергнуть исчерпывающему свой предмет исследованию мыслимые формы чистого усматривания, так же как и выполнимые, на основании чистого усматривания, формальные построения понятий, в отношении всех их свойств и взаимных отношений". Это определение отвлечено автором от содержания создавшегося в последнее время, под именем учения о многообразиях, или учения о формах (Mannigfaltigkeitslehre Римана, или Formenlehre Германа Грассмана), самого общего математического учения, в отношении которого все отдельные математические науки являются не более как его специальными ветвями. Содержание названного сейчас общего математического учения с полною ясностью раскрывает также и связь, существующую между М. и другими науками. Выражения "многообразие" и "форма" характеризуют это содержание с двух разных сторон, так как указывают на два необходимых условия, которые должны быть выполнены при всяком математическом исследовании, какой бы предмет оно не имело. Первое из этих условий состоит в наличности многообразия объектов мышления, составляющих известную совокупность; второе — в чисто формальном способе обработки, т. е. в таком, который привлекает к рассмотрению не собственные конкретные свойства объектов мышления, а только одни взаимные отношения последних. Область математического исследования становится таким образом чрезвычайно обширной, способной к распространению даже на формальную часть логики, как на удовлетворяющую указанным условиям и потому вполне готовую к принятию форм математического алгоритма. В настоящее время это принятие есть уже совершившийся факт, представляемый недавно созданными трудами Буля, Роберта Грассмана, Шредера и др. логическим исчислением, или алгеброй логики. Если затем принять во внимание, что все доставляемое опытом может быть сведено на отношения многообразных объектов мышления, то становится необходимым заключить, что всякая опытная наука, по самой своей природе, должна быть доступна формальному, или математическому, способу обработки. Степень же приложимости математической обработки предмета зависит исключительно от чисто внешних условий исследования. "Рациональная, или теоретическая, механика", "небесная механика", "математическая физика", попытки создания "математической химии", "теория вероятностей" и "математическая статистика" дают изложенным сейчас абстрактным заключениям фактическое реальное подтверждение. Развитие математики началось с создания практических искусств счета и измерения линий, поверхностей и объемов. Началом этого развития можно считать появление у первобытного человека определенного представления единицы и неопределенного представления множества. Затем все последующее развитие первобытного счисления состояло в последовательном выделении из неопределенного представления множества определенных представлений два, три, четыре и т. д. до пределов, которые определялись у различных народов самыми разнообразными обстоятельствами. Обстоятельством, определившим форму и ход первоначального развития счисления, была коренящаяся в условиях и законах первоначального развития представлений невозможность для первобытного человека в течение значительных промежутков времени отделять числовое представление от конкретного представления содержащей его группы предметов. Счет вначале, вследствие этого обстоятельства, мог быть и был только вещественным. Промежутки времени, необходимые для выделения последовательных числовых представлений, были вообще очень большими, но особенно значительную продолжительность имели они в эпоху развития представлений чисел два, три и четыре. На исключительно большую величину промежутка времени, в продолжение которого выделялось представление числа три, и поэтому вся доступная человечеству область счисления ограничивалась определенными представлениями единицы и два, и неопределенным — множества, указывает факт существования во многих языках двойственного числа. К этому же громадному промежутку времени восходят начало развития счисления дробей и связанное с ним первое образование системы счисления. Первой дробью, с которой познакомилось человечество, была половина. Вслед за ней постепенно выходили на свет сознания и ближайшие к ней другие дроби двоичной системы. Половина какого-нибудь предмета могла быть, в свою очередь, разделена на две полполовины; полполовина — на две полполполовины и т. д. до предела, до которого могли доходить требования практической жизни. Вполне характеристичный пример этого образования дробей двоичной системы представляет древнерусская система земельных мер. Землемерные рукописи и официальные акты по землемерию допетровской эпохи доходили в образовании этих дробей до 8, 9 и даже 10 повторений приставки пол- к слову половина (о дальнейшем развитии счисления дробей см. в статье Дроби). Первоначальное разнообразие групп предметов, заимствуемых человеком из окружающей природы для употребления в качестве орудий и средств счета, сменилось, после выделения представления числа четыре, почти исключительным употреблением группы, представляемой пальцами руки, как ближайшей к человеку и постоянно находящейся в его распоряжении. С этого времени дальнейшее развитие счисления так тесно связалось с развитием уменья пользоваться при счете пальцами, что для словесного выражения вновь выделяемых числовых представлений стали в чрезвычайно широких размерах употребляться названия предметов и действий пальцевого счета. После выделения представления числа 5 дальнейшее развитие счисления встретило важное затруднение, состоявшее в невозможности, при выделении следующего числового представления шесть, пользоваться пальцами одной руки, как уже занятыми выражением числа 5. Наблюдения над пальцевым счетом современных дикарей обнаруживают существование и размеры рассматриваемого затруднения в этом и аналогичных других случаях с полною ясностью. После значительного промежутка времени некоторые племена пришли к мысли освобождать занятые выражением числа 5 пальцы одной руки с помощью употребления особого знака, напоминающего человеку, что число 5 уже получено один раз. Этим знаком бывали: черта, проведенная на песке или красящим веществом на какой-нибудь поверхности, камень, и т. д. Этим приемом была создана пятеричная система счисления в ее примитивном виде счета по пяткам и положено начало развитию письменного счисления. Действительно, употребление для условного обозначения предмета других знаков, чем жесты и звуки, и есть уже письмо в самом обширном значении этого слова (см. Письменное счисление). Последовавшее за введением указанного приема развитие счисления состояло в том, что при выделении, с помощью пальцев одной руки, всех следующих числовых представлений до известного предела, попутно выделялись сперва простые кратные пяти, как основного числа пятеричной системы, а затем и единицы следующих разрядов той же системы вместе с кратными им. Другим средством устранения представившегося затруднения, найденным другими племенами, было употребление при выделении следующих за 5-ю числовых представлений пальцев другой руки. Но когда эти племена, достигнув числа 10, должны были перейти к 11, тогда они опять встретились с затруднением, подобным прежнему и состоявшем в невозможности пользоваться пальцами обеих рук, как уже занятыми выражением числа 10. Те же два средства, как и прежде, послужили и для устранения нового затруднения. Одни из племен, придя к мысли обозначать десяток особым знаком, создали получившую позднее всеобщее распространение десятичную систему счисления; другие, напротив, остановившись на мысли воспользоваться пальцами ног, продолжали развивать счисление в прежнем направлении, пока наконец, достигнув числа 20, не пришли в дальнейшем развитии счисления к созданию двадцатеричной системы, закончившему собой цикл образования пальцевых, или натуральных, систем счисления. Средства, при помощи которых происходило дальнейшее развитие счета, оставались все последующее время в сущности теми же, какими были вначале, изменяясь только более или менее резким образом в своих внешних формах, в зависимости от достигаемых человечеством ступеней развития. Согласно двум главным родам употребляемых средств, счет бывает или вещественным, или мысленным. Первый пользуется или предметами, принадлежащими человеческому телу, главным образом пальцами, или же предметами, посторонними человеку. И в том, и в другом случае счет пользуется употребляемыми им предметами или в их непосредственном виде, или в форме изображений, с течением времени все более и более удаляющихся от оригиналов и кончающих переходом в системы условных знаков, или образованием письменного счета в тесном смысле. Несмотря на свою распространенность в позднейшее время, письменный счет не является единственной формой вещественного счета в его позднейшем состоянии. Другой формой, и притом стоящей гораздо ближе к своему древнему прототипу, является инструментальный счет, пользующийся для своих целей различными более или менее сложными искусственными инструментами или орудиями, начиная с первобытного шнурка с узлами и кончая усовершенствованной счетной машиной последней конструкции. Другой главный вид счета — мысленный — в своей чистой первоначальной форме слагается из операций, совершаемых вне сознания и выводимых перед ним с значительным трудом и в более или менее смутных образах только в позднейшее время, по достижении владеющими им лицами значительно высших ступеней развития. При таких свойствах этого счета об употреблении его в древности мы можем судить только по перешедшим в памятники древней математической литературы результатам его приложения к решению различных задач и вопросов. Недостаток данных истории М. может быть пополнен наблюдениями над феноменальными счетчиками нашего времени. Этим именем обозначаются прежде всего лица, которые, без всякой предварительной подготовки, оказываются в состоянии в поразительно короткие промежутки времени производить очень большие вычисления и решать задачи, которые должны быть признаны совершенно выходящими из круга ведения не только неграмотного человека, но даже и лиц, получивших элементарное школьное образование. Можно указать на обратившего на себя недавно внимание всего образованного мира Жака Иноди и на изученных более или менее обстоятельно Анри Монде во Франции, и Ивана Петрова в России. Наблюдения над этими феноменальными счетчиками дают нам основание думать, что начало употребления мысленного счета восходит к очень отдаленным временам развития счисления. Данных для изучения первоначального развития геометрии наука в настоящее время почти совсем не имеет. Первое ознакомление с основными геометрическими понятиями доставляло человечеству созерцание предметов окружающей природы. Но это ознакомление было бы очень поверхностным, если бы к нему не присоединялось с раннего времени воспроизведение образов, представляющихся человеку в окружающем его мире, вызываемое или стремлением к подражанию, или практическими нуждами. Воспроизведение, явившееся результатом первой из этих двух причин, выразилось в первобытных формах живописи и ваяния, и второй — в различных ремеслах и в первобытной форме архитектуры. Но большая часть доставляемых этими средствами геометрических сведений оставалась вне сознания. Прогрессировать в ясности и определенности эти представления едва ли могли ранее эпохи, когда явилась надобность в измерении расстояний, в определении величины земельных участков, в вычислении содержания жидкостей, зерен, плодов и проч. в сосудах и различных помещениях. Употребляемые вначале приемы этих измерений и определений были исключительно эмпирического и индуктивного происхождения. Умозрение стало приводить к сколько-нибудь заметным результатам только значительно позже, и притом первые результаты умозрения в области геометрии могли быть в большинстве случаев только ошибочными. Вполне характерным примером их является имевшее в свое время всеобщее распространение ложное учение о равенстве площадей фигур при равенстве их периметров, и обратно. Учение это получило очень обширное и притом вполне умозрительное развитие. Площадь какого-нибудь данного четырехугольника вычислялась, напр., как площадь прямоугольника, имеющего одинаковый с ним периметр, именно такого, неравные стороны которого равнялись полусуммам противоположных сторон рассматриваемого четырехугольника (египетские землемерные надписи храма в Эдфу). Площади многоугольника, круга, всякой криволинейной фигуры вычислялись как площади квадратов, имеющих сторонами 1/4 периметра рассматриваемой фигуры. Вычитание площадей фигур заменялось вычитанием их периметров и следующим затем определением площади квадрата, периметр которого равнялся полученной разности (русские землемерные рукописи XVII столетия). Древнейшим из известных современной науке памятников древней математической литературы является составленный за 1700 лет до Р. Х., по источникам еще более древним, восходящим именно к промежутку 2221-2179 гг. до Р. Х., египетский папирус Ринда (см. Папирусы математические). В таблицах, составляющих его арифметическую часть, исследователь, кроме действий над целыми и дробными числами, встречает еще случаи возвышения в степени, пропорциональное деление, учение о геометрических отношениях и пропорциях в примитивном виде, определение среднего арифметического, задачи, занимающиеся арифметическими прогрессиями, решение уравнений 1-й степени с одним неизвестным. Изложение решений вопросов и задач в папирусе Ринда лишено даже намека на что-нибудь подобное объяснению или доказательству. Искомый результат или дается прямо, или вычисляется, как бы по рецепту, в обоих случаях он поверяется, так как уверенность в правильности предписанного решения только при посредстве поверки и может быть достигнута. Такой способ изложения, как свидетельствующий, по меньшей мере, о неясности для сознания найденного решения вопроса, показывает, что вначале исключительно, а позднее во всех более трудных случаях решение задач и вопросов доставлялось феноменальными счетчиками и затем, как умственное наследие, передавалось из поколения в поколение. Методов, которыми бессознательно пользовались феноменальные счетчики при своих решениях вопросов и задач, как показывают наблюдения над людьми этого типа в новейшее время, было два; из них один может быть назван методом попыток. Сущность метода состоит в совершении ряда попыток, имеющих целью достигнуть вполне точного решения вопроса или возможно более к нему приблизиться. Так как для успеха дела число таких попыток должно быть возможно более ограниченным, то прежде чем приступить к ним необходимо определить на основании условий вопроса их низший или высший предел или оба вместе. Затем для первой из попыток, следовательно, в качестве числа, представляющего для всего их ряда точку исхода, или, короче, в качестве исходного числа, берется или один из этих пределов, или число, близкое к нему. Выбор для дальнейших попыток, в случае неудачи первой, чисел в ряду следующих за исходным числом всегда следует принципу удобнейших (главным образом для вычисления) чисел. Оценка делаемых попыток в их отношениях к своей главной цели, т. е. по вопросам о том, доставляется ли ими искомое решение вопроса или, в противном случае, насколько они приближают к этому решению, производится с помощью их поверки условиями задачи; без поверки употребление метода делается совершенно немыслимым. Существенной характеристической чертой метода попыток является его применимость к решению самых разнообразных задач и вопросов как теоретического, так и практического характера. Метод попыток может быть прямым, когда попытки занимаются непосредственным определением искомого числа, и непрямым, когда ими определяется число, находящееся в установленной условиями задачи связи с искомым. Частным случаем метода попыток является метод постепенного образования, или составления искомого числа на основании условий вопроса. В этом методе или все попытки, кроме первой, или некоторая часть их, заменяются рядом изменений, совершаемых или в исходном числе, или в числе, доставленном какой-нибудь из последующих попыток. Изменения эти производятся таким образом, чтобы составляющее их объект число постепенно приближалось к искомому. Приложение этого метода допускается, впрочем, далеко не всеми вопросами, решаемыми методом попыток, а потому он и является не более, как только частным его случаем. Другим, находящимся в распоряжении феноменальных счетчиков, методом был обычно употребляемый в современной науке метод выражения искомого неизвестного в данных задачи. Феноменальные счетчики, а затем обыкновенные, пользовались им для решения вопросов с немногими и простыми условиями, указывающими с полной очевидностью ряд действий, исполнение которых над данными числами приводит к искомому неизвестному. В папирусе Ринда встречается только одно правило, имеющее для области обнимаемых им случаев, хотя и крайне тесной, общее значение. Результат умножения каждой дроби с единицей в числителе на дробь 2/3, говорит это правило, всегда состоит из 1/2 умножаемой дроби и из ее 1/6. Так как изложение этого правила следует непосредственно за рядом примеров, его подтверждающих, то исследователь получает право заключить, что оно было найдено помощью индукции через простое перечисление. По всей вероятности, и все другие правила общего характера в рассматриваемую отдаленную эпоху выводились таким же образом. Представляемые папирусом Ринда геометрические сведения древних египтян стоят на гораздо более низкой степени развития, чем их арифметические знания. Для суждения о качественной стороне дела достаточно заметить, что все употребляемые в нем приемы измерения, как величины земельных участков, так и вместимости житниц, неточны. Притом в первом случае они хотя и имеют умозрительный характер, но на степени развития, не стоящей выше учения о равенстве площадей при равенстве периметров; во втором же случае они являются прямо и грубо эмпирическими. Гораздо более высокое положение, приближающееся до некоторой степени к философскому и научному уровню арифметических знаний, занимает в геометрическом отделе папируса Ринда, по точности результатов и по философскому и научному значению основных идей, статья о вычислении пирамид, как заключающая в себе в примитивном виде учение о подобии треугольников и пользующаяся для определения равенства углов в прямоугольных треугольниках приемами, состоящими в смысле науки нашего времени в определении синусов и тангенсов. Высокой для своего времени степенью точности обладает в папирусе Ринда также и прием вычисления площади круга, состоящий в возвышении в квадрат 8/9 его диаметра (см. Квадратура круга). Определенное по этому приему отношение окружности к диаметру равно 3,16. В то же время как и в Египте, или немного позже, математические знания достигли довольно высокой степени развития у жителей Вавилона и Ассирии, у халдеев. Главным источником сведений о том являются таблицы из Сенкере, занимающиеся возвышением последовательных натуральных чисел от 1 до 60 в квадрат и куб и пользующиеся для изображения чисел 60-ричной системой счисления. Кроме того, из сочинений греческих писателей мы узнаем, что учение о пропорциях было принесено Пифагором в Грецию из Вавилона. Не имея таким образом оснований для суждения об объеме и свойствах математических знаний халдеев, мы можем указать, как на единственную известную нам черту различия между ними и знаниями египтян — на характер приложений тех и других. Египетские математические знания прилагались к решению вопросов, имеющих практическое утилитарное значение, напротив, халдейские — главным образом преследовали мистические цели и служили для предсказаний будущего. Умственное развитие, а вместе с ним и развитие науки никогда не шло во всем человечестве равномерно. В то время как одни народы стояли во главе умственного движения человечества, другие оказывались едва вышедшими из первобытного состояния. Когда у последних вместе с улучшением условий их жизни, появлялись, под действием внутренних или внешних импульсов, стремления к приобретению знаний, тогда они должны были прежде всего догонять передовые племена. Если в то же время передовые племена, достигнув высшей доступной им по их способностям или по созданным для них историей условиям жизни степени развития, вырождались и падали, в умственном развитии всего человечества происходил застой или даже видимый временный упадок: приобретение новых знаний прекращалось и умственная работа человечества сводилась единственно к упомянутому усвоению отставшими племенами знаний, уже приобретенных человечеством. Только по достижении этого усвоения отставшие племена получали возможность вести далее дело приобретения новых знаний и через это, в свою очередь, становиться во главе умственного движения человечества. Таким образом, в истории умственной деятельности каждого народа, когда-нибудь занимавшего место в ряду передовых деятелей человечества и затем свершившего весь свой жизненный цикл, исследователь должен различать три периода: период усвоения знаний, уже приобретенных человечеством; период самостоятельной деятельности в общей всему человечеству области приобретения новых знаний и, наконец, период упадка и умственного вырождения. Обращаясь от этого общего рассмотрения хода умственного развития человечества к той из отдельных его областей, которая представляется развитием М., мы находим, что при современном состоянии историко-математических знаний нам доступно изучение вполне завершенного цикла деятельности отдельного народа в области развития М. только на одной нации, на древних греках. Усвоение приобретенных человечеством знаний греками, как нацией, далеко отставшей от передовых народов, началось с особенно усилившегося, после изгнания гиксов из Египта, перехода егип. знаний к народам Малой Азии и в самую Грецию. В течение очень большого промежутка времени, от 1700 г. и ранее и до 600 г. до Р. Х., эти знания были исключительно практического характера, относящиеся к потребностям обыденной жизни и к необходимейшим промыслам, ремеслам и искусствам. В области М. переход научных знаний из Египта в Грецию начался с возвращения, около 590 г. до Р. Х., Фалеса Милетского на родину, в Милет, после долговременного пребывания в Египте. Принесенные им оттуда геометрические и астрономически сведения составляли первое время почти исключительное достояние основанной им ионийской школы. Но это время было очень непродолжительно, так как труд перенесения египетских, а затем и халдейских математических знаний скоро взяли на себя и другие лица: Пифагор, Ойнопид Хиосский и Демокрит из Абдеры. Особенно много сделал в этом направлении Пифагор, что и было главной причиной широкого развития занятий М. в основанной им пифагорейской школе. Так как последовательные стадии развития человечества никогда не сменяют друг друга резко, то в этой школе еще до окончания периода усвоения исследователь встречается уже с проявлениями самостоятельной деятельности греков в области М. Различить однако же в том, что нам известно о математических знаниях пифагорейцев, принадлежащее им самим от заимствованного у египтян и халдеев, в настоящее время нет пока никакой возможности. После разрушения, около 450 г. до Р. Х., представляемого этою школой религиозного братства, ее математические знания, строго оберегаемые наравне со всеми другими знаниями от распространения между лицами, не принадлежащими к союзу, сделались общим достоянием греческой нации. Особенно широкое распространение получили они на родине пифагорейского союза, в греческих колониях Южной Италии, или в так называемой Великой Греции, и в Афинах. В Италии это распространение создало италийскую математическую школу, крупнейшими представителями которой в последующее время были Архитас Тарентский, Эвдокс Книдский и Архимед. В Афинах распространение пифагорейских математических знаний выразилось в деятельности математиков V стол., крупнейшим представителем которых был пифагореец Гиппократ Xиoсский. Деятельность эта была посвящена главным образом попыткам решения трех знаменитых задач: трисекции угла, квадратуры круга и удвоения куба. Этому же столетию принадлежит и первая попытка составления свода геометрических знаний в научной обработке, сделанная Гиппократом Хиосским. С деятельностью математиков V ст., кроме значительного усиления самостоятельности математических работ греческих ученых, связываются в истории М. два важных момента: начало дедуктивного периода развития М., которое в действительности, может быть, относится к еще более раннему времени, напр. к пифагорейской школе или даже к самому Египту, и полное выяснение направления и характера математического гения греческой нации, который с этого времени начал проявлять такую исключительную склонность к геометрическим исследованиям, что на них, можно сказать, сосредоточилась вся деятельность греческой нации в области математики до самого наступления периода упадка. С началом дедуктивного периода закончился в истории развития математики во всем человечестве первоначальный, донаучный период. Период усвоения греками математических знаний, приобретенных человечеством, можно считать закончившимся ко времени деятельности Платона, который хотя и ездил в Египет с целью непосредственного ознакомления с египетскими науками, но, по высокому сравнительно состоянию математических знаний в пифагорейской школе и у математиков V ст., он едва ли мог найти в египетской М. что-нибудь, оставшееся для греков неизвестным. Итак, период вполне самостоятельной деятельности греков в области М. начинается с деятельности Платона и основанной им в 389 г. Философской школы, известной под именем Академии, или даже еще ранее, с работ математиков V ст. С этого времени последующее развитие, если не всей М. вообще, то, несомненно, геометрии, сосредоточивается исключительно в руках одной греческой нации, которая и ведет его, пока находит в своем распоряжении необходимые средства. Главным результатом о математической деятельности самого Платона было создание философии М. и в частности ее методологии. Как известно, его собственные работы очень мало касались увеличения математических знаний в количественном отношении и были направлены главным образом на установление строгих и точных определений основных понятий геометрии, на обнаружение и отведение настоящего места ее основным положениям, на приведение приобретенных ранее математических знаний в строгую логическую связь как между собой, так и с основными понятиями и положениями, и наконец, на приведение в полную ясность и изучение методов открытия и доказательства новых истин, методов, хотя уже давно употребляемых в науке, но еще не выяснившихся в достаточной степени перед сознанием. Методов, разработанных Платоном, по свидетельству Прокла, было три: аналитический, синтетический и апагогический. Особенной новизной для современников Платона отличались, по-видимому, результаты произведенного им изучения аналитического метода, как это можно видеть из того, что Диоген Лаэрций и с меньшей уверенностью Прокл смотрят на этот метод как на нововведение Платона. В дошедших до нас сочинениях Платона не содержится никаких сведений об его исследованиях по рассматриваемому предмету, так что для суждения об их результатах нам не остается ничего другого, как воспользоваться определением этих методов у первого по времени известного нам писателя, который его дает. Таким писателем является Эвклид, по определению которого "анализ есть принятие искомого как бы найденным, чем через следствия достигается то, что найдено истинным, а синтез есть принятие уже найденного, чем через следствия достигается то, что найдено истинным". Изложенные, на основании позднейших исследований предмета, более полным и главное более определенным образом, эти определения представляются в следующем виде. Аналитический метод состоит в образовании цепи предложений, из которых каждое вытекает из следующего за ним, как непосредственное следствие. Первым звеном этой цепи служит доказываемое предложение, последним — предложение уже доказанное. Схема метода такова: требуется доказать существование D. Доказательство: D существует, если С существует; С существует, если В существует; В существует, если А существует, но существование А есть уже доказанная истина, следовательно, и существование D доказано, так как правильно выведенное следствие предложения, представляющего истину, всегда есть истина. Если между двумя следующими одно за другим предложениями цепи существует обратимость, т. е. если при следовании справедливости первого предложения из справедливости второго, также следует обратно и справедливость второго из справедливости первого, то отыскивание этого второго предложения при составлении цепи, как предложения, из которого первое вытекает как следствие, может быть заменено более легким действием вывода второго предложения, как следствия первого. Если обратимость предложений распространяется на всю цепь, то аналитический метод принимает более легкую частную форму, состоящую в образовании цепи предложений, из которых каждое есть непосредственное следствие предыдущего. Эту частную форму обыкновенно и принимают за выраженную определением Эвклида, хотя неопределенность его выражения и не дает для этого достаточного основания. Если же принять во внимание, что, при непонимании значения обратимости предложений, греческие геометры, употребляя эту форму, должны были беспрестанно приходить к ложным выводам, то придется заключить, что путем горького опыта они должны были придти к употреблению общей формы анализа, как никогда не обманывающей возлагаемых на нее надежд. Синтетический метод есть обращение аналитического и поэтому состоит в образовании цепи предложений, из которых первое есть доказанная истина, а каждое из последующих есть следствие ему предшествующего. Об апагогическом методе. или методе приведения к нелепости (reductio ad absurdum), Эвклид не говорит, но довольно ясное его определение наряду с неясными определениями анализа и синтеза дает Прокл, при своем приписывании их Платону; "Третий (апагогический) метод, — говорит он, — есть приведение к невозможному, которое не доказывает прямо того, что ищется, а опровергает то, что ему противоречит, и таким образом через связь того и другого находит истину". В основании этого метода лежит истина, что если из двух предложений одно вполне отрицает другое, или, другими словами, если два предложения противоречащие, то для убеждения в справедливости одного достаточно показать ложность другого. Аналогический метод есть собственно видоизменение аналитического, в котором первым звеном цепи предложений вместо доказываемого предложения является его отрицание, а последним какое-нибудь заведомо ложное или нелепое предложение. Ученые математики, принадлежавшие к Академии во все время ее существования, распадались на две группы: на ученых, получивших свое математическое образование независимо от Академии и находившихся только в более или менее тесных сношениях с ней, и на бывших учеников Академии. К числу первых принадлежали Теэтет Афинский, Леодамас Тазосский, Архитас Тарентский и позднее Эвдокс Книдский; к числу вторых — Неоклид, Леон, Амикл из Гераклеи, братья Менехм и Динострат, и во время старости Платона Теюдий из Магнезии, Кизикен Афинский, Гермотим Колофонский, Филипп из Менде и Филипп из Опуса. В школе Платона часто по его указаниям, а иногда и при непосредственном руководстве, продолжалась разработка планиметрии, получила значительное движение вперед мало разработанная ранее стереометрия, создалось учение о конических сечениях и более общее о геометрических местах. Кроме того, в ней продолжал свое развитие получивший, насколько нам известно, начало в трудах Гиппократа Хиосского метод исчерпывания, о котором мы будем говорить далее, и были сделаны две новые попытки составления книги "Элементов" геометрии: Леоном, в начале существования Академии, и Теюдием из Магнезии в конце жизни Платона. "Элементы" Леона замечательны по введению в них впервые так назыв. диоризма, то есть исследования задачи, состоящего в рассмотрении условий возможности или невозможности ее решения, а также в первом случае и в определении числа ее различных решений. Из математиков, современных Академии, но не принадлежавших к ней, более известны нам по своей деятельности Автолик из Питаны и Аристей Старший. Создание в школе Платона философии М. должно было повести необходимым образом к разработке существенно необходимой для нее истории М. Дело этой разработки взяла на себя основанная учеником Платона, Аристотелем, школа перипатетиков в лице двух своих представителей, Эвдема Родосского и Теофраста Лесбосского. Нельзя не заметить, что в трудах по истории М. этих ученых заключается все крупное, что было сделано школой перипатетиков для развития наук математических. Покровительство науке, оказываемое династией Птолемеев, царей новой греко-египетской монархии, возникшей после смерти Александра Македонского на почве древнего Египта, сделало, приблизительно с 300 г. до Р. Х., из столицы этой монархии, Александрии, главный центр умственной и духовной жизни греческого мира. Щедрые денежные пожертвования на дело науки и просвещения со стороны династии Птолемеев, и особенно трех первых из них: Птолемея Сотера, Птолемея Филадельфа и Птолемея Эвергета, привлекли в Александрию выдающихся представителей науки древней Греции и собрали в Александрийской библиотеке все сокровища греческой ученой и изящной литературы. Самыми крупными из представителей М. в Александрии были Эвклид, Эратосфен и Аполлоний Пергейский. Написанные Эвклидом "Элементы" геометрии закончили собой ряд попыток составления сочинений того же рода. До нынешнего времени остаются они произведением, не имеющим в своей области себе равного. Также классическим, хотя и далеко не в такой степени, является завершившее собой развитие учения о конических сечениях в древней Греции сочинение Аполлония Пергейского: "Восемь книг о конических сечениях", заключающее в себе все сделанное в этой области самим авто
Статья про "Математика" в словаре Брокгауза и Ефрона была прочитана 3255 раз |
TOP 15
|
|||||||