БНБ "БРОКГАУЗ И ЕФРОН" (121188) - Photogallery - Естественные науки - Математика - Технология
|
Марганец, химический элементОпределение "Марганец, химический элемент" в словаре Брокгауза и Ефрона
Марганец, химический элемент (Manganè se — франц. и англ.; Mangan — нем.; Mn = 55,09 [Среднее из 55,16 (Dewar и Scott, 1883) и 55,02 (Marimac, 1884)]. Уже древние знали о существовании главной руды М., пиролюзита, употребляли этот минерал при приготовлении стекла (Плиний Ст.) и уподобляли его магнитному железняку, хотя и знали, что он железа не притягивает. Шееле, в своей статье "De magnesia nigra" (1774), положил начало изучению M., а вместе с тем и хлора, кислорода и бария (в им исследованном материале присутствовала и ВаО). В том же году был получен и металлический М. Ганом. Кроме magnesia nigra существовало (XVI в.) название того же минерала — lapis manganensis; отсюда и ведет свое начало современное наименование металла. Соединения М. очень распространены в природе, но обыкновенно в малых количествах. Богатые металлом руды и минералы сдедующие: пиролюзит MnО 2, браунит Mn2O3, гаусманнит Mn3O4, псиломелан (Mn, Ва)О.MnО 2, манганит Mn2O2(OH)2, марганцевый шпат MnСО 3 обыкновенно в изоморфных смешениях (Mn,Fe)CO 3, (Mn,Ca,Mg)CO3, родонит MnSiO3. В малых количествах М. находится в большинстве силикатов, а потому присутствует в почвах, находится в золе растений и в костях животных. Встречается в виде сернистых соединений MnS и MnS 2, a также образует изоморфные смешения с другими сернистыми металлами. В самородном виде не встречается, потому что очень легко окисляется и труднее железа восстанавливается. Существует несколько путей для получения металлического М.: через восстановление углем окислов при сильном калении (John, Deville, Moissan), при сплавлении MnCl 2 с CaF 2 и металлич. Na (Brunner), путем электролиза крепкого раствора MnCl 2 (Bunsen). M. обыкновенно не получается чистым, содержит углерод, кремний. В чистом виде получают из амальгамы; амальгаму же можно получить, действуя амальгамой натрия на раствор MnCl 2, или электролизом того же раствора, употребляя катод из ртути; по полной отгонке ртути, что совершается при 440° (Moissan), остается порошкообразный металл. Водород и окись углерода более или менее легко действуют на многочисленные окислы М., за исключением закиси MnО; ее они не восстанавливают даже при 600° (Wright и Luff), а потому все они водородом превращаются в MnО; последняя при сплавлении с металлическим алюминием, под известью и плавиковым шпатом, дает довольно чистый металл (до 97% — Greene и Wahl, 1893); при действии магния на сплав MnCl 2 + КСl 2 (1 в. ч. + 2 в. ч.) получается королек очень чистого металла (Glatzel, 1889), удел. вес которого, d 20°/20° = 7,3921. По цвету М. приближается к железу, но обладает красноватым отливом, подобно висмуту; ломок и очень тверд — режет сталь, стекло; совершенно не притягивается магнитом, если не содержит железа; теплоемкость 0,1217 (с содерж. Si, при 14° — 97°, Regnault); плавится труднее железа, при 1900°; по-видимому, летуч при температурах немного высших точки плавления [Как показали опыты нагревания до белого каления в фарфоровой трубке в струе окиси углерода, водорода или азота (Lorenz и Heusler, 1892). Ни с H, ни с CO не получается при этом летучего соединения, подобного NiC 4O4, как показало спектроскопическое исследование пламени H или СО, зажженных при выходе из трубки]. М. легко выделяет водород с разведенными кислотами, при чем получаются соли закиси MnХ 2; даже на подогретую воду он действует и окисляется при обыкновенной температуры на воздухе. Порошкообразный М., из амальгамы, еще легче окисляется на воздухе и под водой; при взбалтывании его с водой и воздухом получается перекись водорода. Сплавы марганца с железом указаны ниже в ст. М. (металлургия), марганцевая сталь, ферроманган, белый чугун. Сплавы с медью очень похожи на сплавы олова с медью (см. Манганин). Сплав М. (80%) с цинком (5%) и медью (15%), так назыв. марганцевый нейзильбер, получается при восстановлении углем окислов, белого цвета, легко обрабатывается и хорошо полируется. О марганцовой бронзе см. Бронза. Из жидкой амальгамы отжиманием получена кристаллическая MnHg 5 [О. Prelingep (1893). Жидкая амальгама была получена, по Муассану, электролизом, по отгонке всей ртути в струе водорода при темно-красном калении остался серый пористый М., уд. в. 7,4212, такой М. реагирует с азотной кислотой с воспламенением, из нашатырного раствора выделяет аммиак и водород, а также следующие металлы из их соляных растворов — Sn, Рb, Sb, As, Bi, Сr, Fe, Со, Ni, Сu, Zu и Cd]. Спектр М. дают искры от вторичной спирали, полученные на поверхности раствора MnCl 2, или свет дуги между электродами из металлического М. Спектр содержит много линий: в оранжевой части (3 л.), в синей (5 л.), в фиолетовой (2 л.). Спектр от MnO — полосчатый; источником служит огонь при бессемеровском процессе.
При обыкн. темп. могут существовать все окислы, при нагревании постоянен один — Mn 3O4; при нагревании на паяльной лампе в тигле при доступе воздуха МnО поглощает кислород, а МnО 2 теряет его, также и Мn 2 О 3 — в обоих случаях образуется Мn 3 О 4, а потому при количественном анализе применяется взвешивание в виде этого окисла; высшие окислы МnО 3 и Мn 2 О 7 в свободном виде очень непостоянны, даже при обыкн. темп. Основные свойства МnО очень значительны; по мере накопления кислорода основные свойства слабеют, но они могут быть подмечены даже для Мn 2 О 7; с другой стороны, МnО 2, будучи основанием крайне слабым, проявляет уже свойства слабого кислотного окисла; ангидридные свойства МnО 3 и особенно Мn 2 О 7 вполне резко выражены.
получается новая соль, аналогично превращению желтой соли в соль Гмелина (см.) но там для этой реакции требуется энергический окислитель, здесь же она совершается очень легко, при действии кислорода воздуха. Эта двойная соль К 3 МnСу 6, относящаяся к окисному типу — МnХ 3, кристаллизуется в виде темно-красных призм; при действии амальгамы калия с водой она восстанавливается в предыдущую.
Довольно давно возникла мысль превращать MnО, находящуюся в остатках после добывания хлора, опять в MnO 2. С 1867 г. часто применяется следующий путь (Walter Weldon): кислая жидкость нейтрализуется углекислой известью, при чем осаждается окись железа; прозрачный раствор смешивают с известковым молоком, нагревают паром и вдувают сильную струю воздуха; в этих условиях, вероятно, благодаря присутствии извести, MnО окисляется до MnО 2, которая и получается затем в осадке и может быть снова пущена в дело.
это превращение совершается и при содействии углекислоты, и при простом разбавлении водой, при чем раствор мутится, вследствие осаждения двуокиси. КMnО 4 есть марганцево-, а К 2 MnО 4 марганцовисто-кислый калий. Если кипятить КMnО 4 в крепком щелочном растворе, то идет обратное превращение при выделении кислорода
прибавление веществ, способных окисляться (напр. спирта), способствует превращению; так же действует и органического происхождения пыль, попадая из воздуха в щелочной раствор КMnО 4. Na2MnO4.10H2 О походит на глауберову соль, а ВаMnО 4 не растворим в воде (подобно BaSO 4) и кислотами разлагается. Соответственная кислота Н 2 MnО 4 неизвестна, а ангидрид MnО 3 представляет собой (Thorpe) аморфную расплывчатую красноватую массу, кажущуюся в отраженном свете почти черной. Если к хорошо охлажденной крепкой серной кислоте прибавлять постепенно KMnO 4, то получается зеленый раствор, а на дне собирается темно-красно-бурая жидкость, не застывающая при -20° и очень непостоянная; это марганцевый ангидрид MnO 7, при нагревании взрывающий [При чем появляется даже огонь; то же происходит при соприкосновении с бумагой и другими органическими веществами или если бросить одну каплю в сосуд, содержащий пары спирта, эфира, сероводорода и проч.] и растворяющийся в воде с разогреванием; получающийся при этом красный раствор содержит кислоту НMnО 4. Упомянутый зеленый сернокислый раствор, образующийся над слоем Mn 2O7, содержит, вероятно, вещество состава (Mn 2O6)SO4. Если к такому раствору прибавлять осторожно, при охлаждении, плавленой поваренной соли, то выделяется марганцевый хлорангидрид MnO 3 Cl (Ascboff), по уравн.:
в виде желтого газа, сгущающегося в охладительной смеси в зеленовато-бурую жидкость, обладающую свойствами хлорангидридов и взрывающую при нагревании. Из того же зеленого раствора был получен (Thorpe) марганцовистый ангидрид; при медленном прибавлении раствора к безводной соде по ур.: ангидрид в виде порошка уносился током газов (СО 2 и О) и собирался в трубке, наполненной битым стеклом. Обыкновенный препарат из этой группы соединений есть KMnO 4, который часто называют "хамелеоном". В совершенно чистом виде он может быть получен (Грегори) так: возможно крепкий раствор 10 ч. КОН смешивают с 7 ч. КСlО 3 и 8 ч. MnО 2, выпаривают досуха и остаток нагревают при темно-красном калении до полного разложения КСlО 3; темно-зеленая масса извлекается водой; отстоявшийся раствор фильтруется через асбест и подвергается кристаллизации; выделяются длинные призмы КMnО 4, изоморфные с КСlО 4. Хамелеон растворим в 15 частях холодной воды; раствор обладает густым пурпуровым цветом. В химической практике хамелеон является окислителем; окисления совершаются особенно легко в присутствии избытка разведенной серной кислоты. Смесь хамелеона с серой взрывает при ударе, смесь с порошкообразным магнием горит очень быстро (см. Магний); раствор КMnО 4 употребляется при очищении водорода (для окисления AsH 3 и пр. примесей), как реактив для окисления органических соединений (Е. Е. Вагнер). В присутствии серной кислоты окислителем является, очевидно, свободная кислота НMnО 4. Относительно применения окислительной способности хамелеона в объемном анализе см. в ст. Железо (анализ), Окислы азота, Оксидиметрия. Хамелеон употребляется при определении азота в органических соединениях, по Кьельдалю, для того, чтобы закончить окисление органического вещества, начатое крепкой серной кислотой; азот здесь при избытке кислоты получается в виде серноаммиачной соли; свободный аммиак хамелеоном окисляется. Фабричное производство солей марганцевой и марганцовистой кислот развилось со времени применения их для дезинфекции (Hofmann, 1859), для чего готовят менее чистые натриевые препараты. Из других соединений М. должно упомянуть о соединениях с серой и азотом. Сернистый M., MnS, находится в природе в виде марганцевого блеска, стально-серой массы или кристаллов (кубов), уд. в. 4,04; искусственно получают при накаливании в токе H 2 S закиси или ее солей; из растворов MnХ 2 сернистый аммоний осаждает тельно-розовый осадок, буреющий на воздухе, при нагревании под раствором превращающийся в зеленый гидрат 3MnS.Н 2 O. Минерал гауэрит, MnS2, большие буро-черные октаэдры; отвечает по составу двуокиси; при нагревании MnSO 4 с раствором многосернистого калия при 160-180° в запаянной трубке получается кирпично-красный порошок того же состава. Два соединения с азотом, Mn5N2 и Mn 3N2 получены недавно (О. Prelinger) и представляют твердые вещества уд. веса 6,58 и 6,21, обладающие металлическим блеском; первое получается при накаливании в струе азота, а второе в струе аммиака — металлического М. из электролизом полученной амальгамы; можно и не выделять предварительно металл из амальгамы, а прямо ею пользоваться. Если нагревать в струе азота амальгаму, то, когда отгонка ртути оканчивается, замечается значительное разогревание трубки, в которой производится операция. M n3N2 при прокаливании в струе азота превращается в Mn 5N2 , а это соединение в струе аммиака дает вновь Mn 3N2. Mn5N2 при нагревании в струе водорода дает аммиак, а также и при действии щелочей и даже воды; химические отношения Mn 3N2 таковы же.
При систематическом анализе соляных смесей, М., по осаждении углекислым барием гидратов окисей типа R 2O3, оказывается в растворе вместе с цинком; по осаждении сернистым аммонием его извлекают из осадка уксусной кислотой, которая не растворяет ZnS; из раствора, не содержащего других металлов, М. осаждают содой и взвешивают в виде Mn 3O4. При сокращенных способах отделения М. оказывается нередко с магнием, подобно которому он трудно осаждается в присутствии аммиачных солей; отделение в таких случаях основывается на переводе MnХ 2 в MnO 2, действием галоида в щелочном растворе. Техническое испытание марганцевых руд и препаратов нередко сводится к определению в них кислорода, способного выделять хлор с соляной кислотой; отвешенное количество испытуемого материала обрабатывают соляной кислотой, улавливают хлор раствором KJ и определяют йод, сделавшийся свободным (см. Йодометрия).
Статья про "Марганец, химический элемент" в словаре Брокгауза и Ефрона была прочитана 1541 раз |
TOP 15
|
|||||||