БНБ "БРОКГАУЗ И ЕФРОН" (121188) - Photogallery - Естественные науки - Математика - Технология
|
ЛогарифмОпределение "Логарифм" в словаре Брокгауза и Ефрона
Логарифм — Л. данного числа n называется показатель степени, в которую нужно возвести некоторое другое данное число а, называемое основанием, чтобы получить n; так что зависимость между данным числом n, основанием а и Л. х числа n выражается формулою n = a х. Л. числа обозначается символом log, или lg, или L. Л. числа n, взятый при основании а, обозначается иногда так: lgan, причем всегда должно удовлетворяться равенство n = algan. Например, из равенства 1000=10 3 следует 3=lg 10 1000. Из равенства n= а lgan вытекают свойства логарифмов, обусловливающие полезность этой функции, а именно: 1) Л. произведения равен сумме Л. производителей; 2) Л. частного равен разности Л. делимого и делителя; 3) Л. степени равен произведению показателя степени на число, возводимое в степень; 4) Л. корня равен Л. подкоренной величины, разделенному на показатель корня. Эти свойства выражаются формулами:
lgm√u = lgu/m.
Ближайший к нему Л. в таблицах имеет мантиссу 0278794, и ему соотвтствует в таблице число 10663; соответствующее число должно иметь одну цифру в целой части; если возьмет 1,0668, то это число выразит собою искомое число с точностью 0,0001. 2) Найдем . Обыкновенная алгебра даже не дает никаких других приемов для вычисления такого радикала кроме логарифмирования, посредством которого задача решается тем, что отыскивается в таблице lg3=0,4 771213; делением этого Л. на 5 получается 0,0954242, ближайший к этому логарифм в таблицах находим: 0,0954135 , которому соответствует в таблице число 1,2457; это и будет с точностью 0,0001. Логарифмы были изобретены шотландским геометром Непером (Napier), который в 1614 году напечатал "Mirifici logarithmorum canonis descriptio", посвященное им принцу Валлийскому (впоследствии король Карл I). Это сочинение in 4° представляет 56 страниц текста и 90 страниц таблиц; оканчивается оно словами: "собирая плоды этого небольшого произведения, воздайте должную славу и благодарность Богу высшему создателю и расточителю всех благ". Непер принял за основание своих таблиц особое несоизмеримое число, имеющее чрезвычайно важное значение в анализе и обозначаемое обыкновенно через е. Такой выбор основания поясняется следующими соображениями. Пусть α есть весьма малая величина, а — основание какой-либо системы; тогда члены арифметической прогрессии: 0, α, 2 α, 3 α... представят собою Л. членов геометрической прогрессии: 1, а α, а 2 α , а 3 α ..., в которой знаменатель отношения а α, благодаря малости а, весьма мало отличается от 1. Назовем через β ту малую величину, на которую а α отличается от 1, так что a α =1+ β; положим α / β=M. Тогда арифметическая прогрессия примет вид: 0, Mβ, 2M β, 3M β..., геометрическая же обратится в (1+β)0, (1+ β)1, (1+ β)2... Количество β совершенно произвольно: известно только, что оно очень мало; множитель же M зависит от того, какое мы избрали основание. Самое простое положить M =1. Основание, при котором М=1, и выбрано было Непером для его таблиц. Определим его величину: при М=1 упомянутая арифметическая прогрессия обращается в: 0, β, 2 β, 3 β..., геометрическая есть (1+β)0, (1+ β)1, (1+ β)2...; основание есть то число, которого Л. равен единице; положим, что (m+1) ый член арифметической прогрессии равен 1, то есть что m β=1, тогда соответствующий член (1+β)m геометрической прогрессии и будет основанием, при котором М=1. Подставим в этот член вместо β его величину из m β=1, получим [1+(1/ m)]m. Эта величина и будет основанием неперовых Л., так что, разлагая до бинома Ньютона, получим
так как β весьма мало, то m весьма велико, и дроби, содержащие m в знаменателе, по малой их величине можно отбросить; таким образом получим:
Неперовы Л. называются иногда гиперболическими или натуральными; натуральными потому, что проще всего было предположить М=1; гиперболическими потому, что если в равносторонней гиперболе, отнесенной к асимптотам, принять абсциссу вершины за единицу, то площадь, заключенная между гиперболою, осью абсцисс, ординатою вершины и ординатою, соответствующею абсциссе x, равна lgx в неперовой системе. Величина е имеет особенно важное значение в анализе благодаря существованию ряда:
благодаря способности разлагаться в такой ряд показательная функция e х служит переходом от алгебраических функций к тригонометрическим, потому что из сравнения этого ряда с разложениями cosx и sinx следуют формулы:
Зная Л. числа m при данном основании а, можно определить Л. х числа m и при всяком другом основании b, потому что из равенства m=е следует lgm=xlgab, откуда: х=lg bm=(lgam)/(lga b); из этой формулы видно, что, имея Л. числа m при основании а, следует только помножить его на 1/(lg a b), чтобы получить Л. числа m при основании b. Множитель, служащий для перехода от одной системы к другой, называется модулем. Модуль, на который следует множить неперовы Л. для получения Л. при основании 10, равен 0,4349448. Л. удовлетворяют, между прочим, следующим замечательным рядам: lg(1+x)=(x — x2/2 + x3/3 + x4/4 +...)M, где M есть модуль для перехода от неперовых Л.; lg(n+1)-lgn = 2M[1/(2n+1) + 1/3(2n+1)3 + 1/5(2n+1)5 +...]. Посредством последнего, весьма быстро сходящегося ряда обыкновенно и вычисляются Л. следующим образом: зная, что lg100=2, подставим в наш ряд 100 вместо n; получим lg101 — 2 = M(1/201 + 1/3.2013 + 1/5.2015 +...); последующие члены ряда, стоящего в скобках, уже настолько малы, что ими можно пренебречь и простым вычислением получить lg101=2,0043214; зная lg101, получим lg102 и так далее. Понятие о Л. обобщается распространением логарифмирования и на мнимые функции; при этом получаются формулы: lg(a+bi) = lg[r(cos φ +isin φ)] = lgr + (2n π + φ)i, где i=√(-1), r=√(a2+b2), cos φ =a/[√(a2+b2)], sin φ =b/[√(a2+b2)]
Статья про "Логарифм" в словаре Брокгауза и Ефрона была прочитана 1511 раз |
TOP 15
|
|||||||