БНБ "БРОКГАУЗ И ЕФРОН" (121188) - Photogallery - Естественные науки - Математика - Технология
|
Крахмал, в химииОпределение "Крахмал, в химии" в словаре Брокгауза и Ефрона
Крахмал, в химии
Наиболее густой клейстер дает картофельный К., наиболее жидкий — пшеничный (или ароурутный); впрочем, густота клейстера по-видимому способна меняться, в зависимости от способа приготовления (Браун и Герон) даже при одинаковом содержании одного и того же сухого К. [Может быть, эти различия должны быть объяснены недостаточной чистотой и свежестью К., всегда содержащего небольшие количества минеральных солей и декстрина]. Нагретый под давлением выше 100° Ц. клейстер, по-видимому, дает декстрин и мальтозу; впрочем, по Сокслету, последняя образуется только если в К. содержались следы молочной или какой-нибудь другой кислоты (?). Отношение клейстера к замораживанию см. выше. К. растворяется при 190° Ц. в глицерине (картофельный скорее пшеничного или рисового). Из раствора спирт осаждает растворимый K. При нагревании до 200° Ц. образуется декстрин (Зулковский, см. ниже и Йодометрия). С тех пор как Кирхгоф, Гэрен-Вари, Пайен — установили превращение К. под влиянием кислот (ср. Каталитические реакции) в d- глюкозу (см.): С 6 Н 10 О 5 +Н 2 О = С 6 Н 12 О 6, исследованием этой реакции занимались многочисленные ученые, но и посейчас в ней еще много не выясненного. Соляная кислота умеренной крепости, действуя в продолжение нескольких дней при обыкновенной температуре на К., не изменяет его микроскопического строения, но превращает в видоизменение, совершенно растворимое в воде, не дающее клейстера при нагревании. Получающееся тело тождественно с веществом, образующимся из клейстера при ограниченном действии солода (Линтнер, Браун и Моррис). Продолжительное действие 1 2% соляной кислоты на холоде ведет к образованию амилодекстрина или растворимого К. (см. ниже; Негели, Браун и Моррис). Кипящая, разбавленная кислота превращает К. сначала в растворимое видоизменение, а затем в декстрин и мальтозу [Есть указание, что промежуточными продуктами являются амилоины — декстринообразные вещества, в состав частицы которых входят остатки мальтозы (Браун, Моррис и Мориц)], в конце же концов получается d- глюкоза. Полное превращение наступает тем скорее и совершеннее, чем выше температура (однако, до известного предела, иначе наступает — реверсия, см.) и чем дольше время реагирования (Аллин). Другие кислоты, как-то: серная, щавелевая и даже угольная действуют на К. подобно соляной, но менее энергично. Вообще относительно действия кислот на К. можно считать твердо установленным, что конечным продуктом является d -глюкоза [С концентрированной серной кислотой К. дает различные сульфокислоты (Фелинг, Мускулюс, ср. Глицерин и Гидраты углерода); при нагревании с крепкой серной, особенно же с соляной кислотой, К., наряду с гумином и муравьиной кислотой, дает левулиновую кислоту (Ришбит).], на которую, однако, кислоты действуют в свою очередь, давая вещества, плохо изученные до сих пор [Между прочим, в продажной глюкозе из К. имеется галлизин, впервые полученный при брожении глюкозы (Шмидт, Кобенцель, см. Галлизин). Галлизин тождествен с изомальтозой, полученной Э. Фишером при действии крепкой соляной кислоты на глюкозу (Шейблер и Миттельмейер).]. Несомненно также, что промежуточными веществами между К. и глюкозой являются декстрин (декстрины), мальтоза и продукты их превращений. Быстрота и характер реакции меняются с крепостью кислоты и в зависимости от температуры и давления, при котором она ведется. Наиболее полное и быстрое превращение в d -глюкозу имеет место, когда действует небольшое количество кислоты (от 1,5% до 2% или даже менее), а количество К. не превышает 1 части на 3 части разбавленной кислоты. Действие диастаза на К. было предметом тоже многочисленных исследований, но только немногие факты в этой области можно считать окончательно установленными. Напр., по О'Сюлливану, Брауну и Герону диастаз не действует на желатинированный К. на холоде, а по Кьелдалю этого нельзя утверждать о всех К. Возможно, что причина разногласия кроется в некоторых свойствах К., находящихся в зависимости от степени зрелости материала, из которого он получен (О'Сюлливан). Если нагреть крахмальный клейстер до 60° Ц. (или около того) и прибавить немного раствора диастаза (или холодной воды с солодом), то клейкость его начинает тотчас же исчезать, раствор быстро теряет способность окрашиваться йодом в синий цвет, а на короткое время приобретает способность окрашиваться им в яркий красновато-коричневый цвет; она, однако, быстро теряется, если диастаз прибавлен в достаточном количестве. Раствор становится тогда совершенно прозрачным — при употреблении некоторых видов К., а при других К. остается большее или меньшее количество хлопьеобразного вещества, плавающего в прозрачной жидкости [Негели считал это явление за доказательство химической неоднородности крахм. зерен, которые, он думал, состоят из двух веществ: гранулезы, вещества растворяющегося, и целлюлозы — вещества нерастворимого. Некоторые авторы называют целлюлозу К. "фаринозой". По А. Мейеру, "целлюлоза К." или "фариноза" есть продукт изменения К. под влиянием переводящих его в раствор реагентов, и он называет его амилодекстрином. Согласно с большинством название амилодекстрина дано ниже растворимому К.]. При низшей температуре (чем 60° Ц.) процесс растворения К. совершается медленно. Что касается продуктов реакции, то натура их и та последовательность, в которой они образуются, до сих пор еще не вполне изучены. Первые исследователи в этой области (Пайен, Мускулюс, Шварцер) предполагали, что главным продуктом является d -глюкоза и что реакция останавливается, когда количество глюкозы достигает известной величины (в этом отношении отдельные показания не сходились между собою). О'Сюлливан, однако, доказал, что образующийся сахар не d -глюкоза, а мальтоза, наряду с которой получается декстрин (декстрины?) и, что если достаточно продлить действие диастаза на К., то он может быть нацело превращен в мальтозу; относительные количества этих веществ меняются в зависимости от количества диастаза и при одном и том же количестве последнего — главным образом в зависимости от температуры, при которой идет реакция; так, напр., при 63°: (С 6 Н 10 О 5)3 +Н 2 О = С 12 Н 22 О 11 (мальтоза) + С 6 Н 10 О 5 (декстрин); при 64°-69°: (С 6 Н 10 О 5)6 +Н 2 О = С 12 Н 22 О 11 (мальтоза) + 4С 6 Н 10 О 5; выше 69° до температуры уничтожения активности диастаза: (С 6 Н 10 О 5)12 +Н 2 О = С 12 Н 22 О 11 + 10С 6 Н 10 О 5 (см. Декстрин, где для декстрина дана более вероятная формула (С 12 Н 20 О 10)n, О'Сюлливан). Затем найдя, что первым продуктом реакции является растворимый К., О'Сюлливан дал для его превращения в мальтозу следующие уравнения: (С 6 Н 10 О 5)12 +Н 2 О = С 12 Н 22 О 11 + (С 6 Н 10 О 5)10 (α-декстрин) — при 71°-75°, (С 6 Н 10 О 5)12 + 2Н 2 О = 2С 12 Н 22 О 11 + (С 6 Н 10 О 5)8 (β-декстрин I) — при 64°-70°, (С 6 Н 10 О 5)12 + 3Н 2 О = 3С 12 Н 22 О 11 + (С 6 Н 10 О 5)6 (β-декстрин II) — при 70°-71°, (С 6 Н 10 О 5)12 + 4Н 2 О = 4С 12 Н 22 О 11 + (С 6 Н 10 О 5)4 (β-декстрин III) — при 63° и, наконец, (С 6 Н 10 О 5)4 + 2Н 2 О = 2С 12 Н 22 О 11. α-декстрин О'Сюлливан называет кроме того эритродекстрином (т. е. дающим красное окрашивание), название впервые данное Брюкне, а β-декстрины ахроодекстринами (т. е. не дающими окрашивания с йодом). Впоследствии между ахроодекстринами и мальтозой был найден, Герцфельдом и Брауном, и Моррисом, так называемый мальтодекстрин, близко стоящий к мальтозе, но не способный бродить (Браун и Герон), отличающийся от ахроодекстрина О'Сюлливана по своей оптической деятельности (см. ниже), по способности немного восстановлять Феллингову жидкость. Следующая табличка дает более наглядное представление о ходе превращения К. под влияем диастаза:
*) По Брюкнеру, Мускулюсу и Арт. Мейеру эритродестрин представляет просто смесь ахроодекстрина с небольшим количеством растворимого К. амилодекстрина, а не самостоятельное химически однородное тело. Действительно, раствор ахроодекстрина с небольшой примесью амилодекстрина окрашивается йодом в фиолетовый цвет. **) Жидкость Феллинга в одном литре содержит 34,65 г медного купороса, 173 г сегнетовой соли (см. Винная кислота) и 480 куб. см раствора едкого натра удельного веса 1,14. Так как она скоро меняет свойства при стоянии, то рекомендуется готовить отдельно 3 раствора: синий — раствор медного купороса, и белый — раствор сегнетовой соли со щелочью, которые смешиваются, в равных объемах, непосредственно перед опытом. Наиболее употребительны следующие отношения.
При точном соблюдении условий, данных Сокслетом, 1 к. с. его раствора отвечает 4,753 мгр. декстрозы. Обыкновенно количество закиси меди или же объем Феллинговой жидкости, восстановляемой 1 гр. декстрозы, принимается за 100, а соответственные величины для 1 гр. какого-нибудь другого вещества, способного восстановлять Феллингову жидкость, выражаются в % первых величин и обозначаются буквой К. К=50 означает, что данное вещество обладает половинной восстановительной способностью сравнительно с декстрозой. ***) Жидкость Барфеда — раствор 1 ч. средней уксусно-медной соли в 15 ч. воды; на 200 к. с. раствора прибавляют 5 к. с. 38% уксусной кислоты, при нагревании с d -глюкозой жидкость дает несколько Cu 2 О, но не восстановляется молочным сахаром, тростниковым сахаром, мальтозой и декстрином при кратковременном кипячении. ****) P — процентное содержание мальтозы, Т — температура опыта, для 10% раствора и температуры 20°, след. (α)D =138,3°, число удовлетворительно согласующееся с данными Брауна и Герона, по которым (α)D = 137,9°, a (α)j=150,4°; по Сюлливану (α)j =154°-155°.
Существуют, впрочем, в литературе указания, на основании которых можно предполагать, что обилие продуктов при действии диастаза на К. имеет причиной две одновременно идущие в противоположные стороны реакции (ср. выше действие кислот на К.), а именно Линтнер нашел между ними изомальтозу, вещество ранее полученное Э. Фишером при действии соляной кислоты на d- глюкозу: 2С 6 Н 12 О 6 — Н 2 О = С 12 Н 22 О 11; с этим вполне гармонирует и наблюдение О'Сюлливана, что количество "декстрина" возрастает с повышением температуры (см. выше); а потому мыслимо, что есть два рода декстринов, из которых одни будут промежуточными веществами между К. и мальтозой, а другие представляют продукты уплотнения этой последней [Кроме того, так как при перегонке К. с серной кислотой в некоторых случаях констатирован фурфурол, характерный по Толленсу для пентоз и их производных (см. Гидраты углерода), то можно думать, что некоторые К. происходят не из d -глюкозы, а из пентоз и даже тетроз.]. Что касается действия других энзим на К., то надо заметить, что оно гораздо менее изучено. Есть указания, что глюкоза — фермент, содержащийся в заметных количествах в маисе и иногда (?) в ячмене и пшенице — способна отчасти превращать его в d -глюкозу (Кюизинье, Линтнер). Крахм. клейстер, особенно при 60° Ц. (Буркело), птиалином, ферментом слюны превращается в мальтозу, декстрин, способный восстановлять Феллингову жидкость, но не способный бродить, и в небольшом количестве в d- глюкозу (Негели, Доброславин, Меркер). Энзимы, способные растворять К., были найдены в панкреатическом соке (Браун и Герон), в тонких кишках (они же), в печени (К. Бернар) и многих других животных тканях (Элленбергер и Гофмейстер, Пашутин), в желудке, панкреатической железе и лимфе брюшины рыб (Рише, Крукенберг); в листьях и других частях растений (Баранецкий, "Die st ä rkeumbildenden Fermente in den Pflanzen"). В крови содержится диастатический фермент, так как он превращает К. в декстрин и мальтозу. Затем некоторые бактерии, плесени и т. д. тоже вырабатывают энзиму (энзимы?), способные тоже растворять К.; в большинстве случаев продукты реакции мало исследованы. Bacillus suaveolens дает декстрин, глюкозу, спирт, альдегид, муравьиную, уксусную и масляную кислоты, a Bacillus amylozymicus — амиловый спирт, причем промежуточными телами, вероятно, являются декстрин и мальтоза или d -глюкоза; по Аткинсону (наблюдение сделано в Японии) плесень, появляющаяся на запаренном рисе, выделяет энзиму, способную в конце концов превращать К. в d- глюкозу (ср. действие глюкозы). Хлор не окрашивает крахм. раствора, а бром дает с ним желтую окраску; как тот, так и другой окисляют К. в присутствии щелочей в глюконовую кислоту (Габерман, Герцфельд). Йод дает характерную ярко-синюю окраску — реакция, благодаря чувствительности, служащая как для открытия К., так и для открытия следов йода (см. Йодометрия). Причина окрашивания лежит (Кюстер) в образовании йодом с К. так называемого "твердого раствора" (Фан-т'Гофф); спирт извлекает из него йод и наоборот раствор йода в крепком спирте К. не окрашивает. Слабый раствор щелочей не действует на К. на холоде, но растворы, содержащие свыше 3% щелочи, заставляют разбухать крахм. зерна, превращают их затем в густой, прозрачный клейстер и, наконец, в прозрачный же раствор, в котором уже заключаются соединения К. со щелочами (Шмидт, Вентцке), вещества оптически деятельные (Бешан, Томсен), но не способные восстановлять щелочного раствора окиси меди (Браун и Герон). Калиевое производное получается осаждением спиртом раствора К. в разбавленном едком кали (осадок отжимают, растворяют в воде, снова осаждают спиртом; процесс повторяют несколько раз) и имеет, по Толленсу и Пфейферу, состав С 24 Н 39 КО 20; частичная формула несомненно больше. Того же самого состава известно и натриевое производное, полученное Рейхардтом. По Драггендорфу спиртовой раствор едких щелочей не действует на К. (?). При плавлении с едким кали К., подобно другим углеводам, дает щавелевую кислоту, уксусную и др. продукты. Известны производные К., содержащие бapий, кальций и стронций; все они мало характерны и состав их далеко еще нельзя считать точно установленным. При сухой перегонке с известью К. дает ацетон, окись мезитила, изофорон и др. кетоны. Нагретый с аммиаком, он образует коричневые, аморфные, азотсодержащие вещества (Тенар). С уксусным ангидридом К. дает триацетин (Шютценбергер и Ноден, Михаель) формулы С 6 Н 7 О 2 (С 2 Н 3 О 2)3, аморфное вещество, окрашивающееся в синий цвет (?) йодом и при действии щелочей легко распадающееся обратно на К. и уксусную кислоту (ее соли).
Для тех случаев, когда возможны чистые средние пробы, предложены многие способы: большинство основано на превращении К., или продуктов его изменения, в d -глюкозу при нагревании с разбавленной соляной (или серной) кислотой, причем d -глюкоза определяется (по объему или по весу) раствором Феллинга (см. выше), а содержание К. вычисляется по уравнению С 6 Н 10 О 5 +Н 2 О = С 6 Н 12 О 6 (Заксе, Меркер, Сокслет). Все подобные методы неудовлетворительны однако в том отношении, что трудно, если не невозможно, обратить вполне К., или производные К., в d -глюкозу, так как возможна с одной стороны ошибка от продолжительного реагирования кислоты (см. выше действие кислот на К.), а с другой и от недостаточно долгого, и, наконец, та и другая ошибка возможны одновременно, а потому количество восстановленной Феллинговой жидкости, рассчитанное на d -глюкозу, не может служить мерой превращенного К. Другое препятствие заключается в том, что разбавленные кислоты превращают и другие вещества кроме К. в тела, способные восстановлять окись меди. Более точен в этом отношении метод О'Сюлливана, которым К. может быть определен с достаточной точностью в большинстве веществ. Если данное тело не может быть прямо обращено в порошок, то его сначала сушат в теплом, сухом воздухе и потом растирают. Затем 5 гр. порошка (или несколько более, если К. содержится менее 40%) вводят в широкогорлую колбу емкостью в 100-120 куб. см., пропитывают спиртом уд. вес. 0,82 и по прошествии некоторого времени прибавляют 20-25 куб. см. эфира. Прозрачный эфирный раствор сливается по прошествии нескольких часов и на осадок наливают снова два или три раза эфир. Потом осадок извлекается спиртом уд. в. 0,90 при 35°-38°, а затем обрабатывается большим количеством воды в продолжение по крайней мере 24 ч. Если показываются признаки брожения, то необходимо прибавить к воде немного салициловой кислоты. Весь остаток, по извлечении его водой, вместе с фильтром перемещается в коническую колбу приблизительно в 100 куб. см. емкости и разбавляется водой до 40-45 к. с. Жидкость нагревают до кипения в продолжение нескольких минут на водяной бане при постоянном помешивании для получения однообразного теста, потом, охладив его до 62°-63°, прибавляют от 0,025 до 0,035 гр. диастаза (или эквивалентное ему количество солодяного экстракта, ср. Декстрин) и оставляют при этой температуре несколько часов. По прошествии этого времени содержимое сосуда кипятят несколько минут, фильтруют и собирают фильтрат в колбу емкостью в 100 куб. см. Осадок тщательно промывают несколько раз небольшим количеством кипящей воды и профильтрованную жидкость доводят до 100 куб. см. (при 15,5° Ц.). Восстановляющую способность такой жидкости относят на содержание мальтозы, избыток оптической деятельности считают принадлежащим декстрину, и на основании его рассчитывают содержание К. (ср. выше распадения К. при 62°-63° под влиянием диастаза [Следующий пример делает более ясным сказанное. Представим, что 5 гр. ячменной муки обрабатываются вышеописанным образом, и к остатку прибавляем 0,03 гр. диастаза. Если употребить экстракт солода, то часть его должна быть нагрета в продолжение такого же времени и до той же температуры, как и проба; потом надо его прокипятить и определить вращательную способность и способность восстановления; полученные таким образом данные должны быть потом вычтены. Предположим, что получены 100 куб. см. раствора с уд. в. в 1,01003, содержащих 2,5 3 9 гр. твердого остатка. 9,178 гр. этого раствора дают с Феллинговой жидкостью 0,247 гр. Cu 2 О. Вращательная способность в трубке в 200 мм. = +21,1 делениям (сахариметр Солейль-Вентцке-Шейблера). Из этого следует: 0,241 + 0,7256 (К. мальтозы =62,5) =0,1748 гр. мальтозы; 9,178 гр.: 101,003 (вес 100 куб. см. раствора) = 0,1748: х (содержание мальтозы в 100 куб. см.) х = 1,923. Вращательная способность мальтозы [α]j = +154°, а декстрина [α]j = +222°, и 1 гр. мальтозы, растворенный в 100 куб. см. в трубке в 200 мм. длины = 8,52 делениям вышеупомянутого прибора, а 1 гр. декстрина в тех же условиях= 11,56 делениям. Следовательно, 1,923 х 8,02 = 15,422 делениям, приходящимся на долю вращательной способности мальтозы, a 21,1-15,422 = 5,678 делениям и отвечает оптической деятельности декстрина, а 5,678: 11,56 = 0,491 гр. и есть количество его на 100 куб. см. раствора. Декстрин образовался из К. без какого-либо увеличения веса; 100 гр. К. дают 105,5 мальтозы, поэтому 1,055:1,923 1:x К.; х = 1,822 гр. К. 1,822+0,491 (в виде декстрина) =2,313 К. а на 5 гр., взятых для опыта, это составляет 46,26% (О'Сюлливан).]. При некоторых исследуемых образцах водяной экстракт содержит растворимый К. (окрашивающийся в синий цвет йодом). Это вещество не должно быть присчитываемо к К.; его должно определить отдельно как таковое.
А. И. Горбов. Δ.
Отсюда видно, что наименьшие размеры имеют крахмальные зернышки ячменя, большие — в пшенице и наибольшие — во ржи. Из приведенных фигур видно, что крахмальные зернышки представляют или однообразное строение, или слоистое, а также замечается и внутренняя полость или ядро; которое чаще всего определяется местом, откуда идут расходящиеся к окружности трещины в виде лучей; слоистость и трещины, согласно гипотезе Негели, должны быть приписаны неодинаковому распределению воды в различных частях крахмального зерна. Крахмальные зернышки овса (фиг. 4) представляются в виде простых и сложных зерен, последние имеют шарообразную или яйцевидную форму, составленную из многогранных крупинок, диаметр которых чаще бывает около 0,008 мм.; диаметр сложных зерен бывает от 0,014 до 0,054 мм. и чаще 0,031 мм.; более многочисленные сложные зернышки имеют округленную или бочкообразную форму, образованную 2-4 правильно сложившимися крупинками. Крахмальные зернышки риса (фиг. 5) имеют сходство с предыдущими; сложные зерна бывают от 0,018 до 0,036 и чаще 0,022 мм.; отдельные крупинки, чаще около 0,005 мм., имеют довольно правильную многогранную форму, внутри крупинок замечаются звездообразные полости. Крахмальные крупинки маиса (фиг. 6), ближе лежащие к поверхности зерна, имеют многогранную форму, лежащие же ближе к центру более округлены, яйцевидны или многогранны, с закругленными гранями; чаще встречающийся диаметр отдельных зернышек около 0,020 мм.; внутри их видна полость с звездообразными расщелинами. Крахмальные зерна гречихи (фиг. 7) представляются многогранниками с плоскими или округленными гранями; диаметр зерен от 0,0132 до 0,0220 мм.; внутри их замечаются центрально расположенные округленные полости; в микроскопической картине отдельные зернышки представляются или раздельными, или соединенными в группы, состоящие из двух или большого числа зернышек. Крахмальные зерна проса (фиг. 8) имеют вид мелких многогранников, диаметром от 0,0044 до 0,0088 мм.; слоистость и полости незаметны в них. Существенно отличаются от вышерассмотренных форм крахмальные зернышки растений бобовых, напр. бобов (Vicia Faba) и фасоли (Phaseolus vulgaris, фиг. 9), гороха (фиг. 10) и чечевицы (фиг. 11); крахмальные зернышки картофеля (Solanum tuberosum, фиг. 12) столь же трудно смешать под микроскопом с формами, свойственными крахмальн. зернышкам других растений. Фиг. 12. Картофеля. Всякое крахмальное зерно состоит из двоякого рода веществ: гранулезы, окрашивающейся от йода в синий цвет, и целлюлозы, не окрашивающейся от одного йода. Гранулеза составляет преобладающую часть крахмального зерна, потому-то К. и окрашивается от прибавления йода в избытке в темный синий цвет. При нагревании К. в подкисленной воде или с вытяжкой из солода, часть веществ, составляющих крахмальные зерна, переходит в раствор, и тогда нерастворимый остаток перестает синеть от йода, но синеет от действия йода с серной кислотой, а это и указывает, что он состоит из целлюлозы или клетчатки. Для грубого определения количества К. в зернах их размельчают в муку, взвешивают и при посредстве холодной воды замешивают в густое тесто, которое затем промывают водою, постоянно разминая. Вода уносит с собой К. и часть других веществ; она, при начале промывки теста, бывает мутного, беловатого цвета, а затем становится совершенно светлой и к этому времени промываемое тесто оказывается более вязким и клейким и состоит из клейковины. Воду, увлекшую с собой К., собирают и оставляют в покое, причем на дне сосуда осаждается К., а сверх него располагаются клочья клейковины, также унесенные водой. Пропуская промывную воду через частое волосяное сито, удерживающее клейковину, получают более чистый крахмал, который высушивают и взвешивают. Более точные способы определения см. в статьях: Крахмал (химич.) и Крахмальное производство. Количество К. в зернах, высушенных на воздухе, колеблется в следующих границах:
П. Астафьев. Δ.
Статья про "Крахмал, в химии" в словаре Брокгауза и Ефрона была прочитана 3490 раз |
TOP 15
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||