БНБ "БРОКГАУЗ И ЕФРОН" (121188) - Photogallery - Естественные науки - Математика - Технология
|
Дифференциальные уравненияОпределение "Дифференциальные уравнения" в словаре Брокгауза и Ефрона
Дифференциальные уравнения (мат.) — Д. называются такие уравнения, которые дают зависимость между независимыми переменными, их функциями и производными этих функций по их независимым переменным. Например, пусть будет х независимая переменная, а у ее функция; тогда уравнение
Д. уравнения разделяются на две больших категории: обыкновенные и с частными производными. Обыкновенными называются уравнения, в которые входят функции от одного независимого переменного и их производные по этому переменному. Уравнения с частными производными заключают функции от нескольких переменных и их частные производные по этим независимым переменным. Написанное выше Д. уравнение относится к числу обыкновенных, примером же уравнения с частными производными будет
Д. уравнения различаются по порядкам. Порядком Д. уравнения называется высший из порядков производных, входящих в уравнение. Приведенный пример обыкновенного уравнения дает уравнение первого порядка, уравнение же с частными производными написано второго порядка. Интегрировать одно или несколько Д. уравнений значит найти все функции одного или нескольких независимых переменных (судя по тому, какие уравнения заданы), которые, будучи подставлены в Д. уравнение вместо обозначенных в нем функций, обращали бы его в тождество. Подробнее в ст. Интегральное исчисление.
Статья про "Дифференциальные уравнения" в словаре Брокгауза и Ефрона была прочитана 861 раз |
TOP 15
|
|||||||