БНБ "БРОКГАУЗ И ЕФРОН" (121188) - Photogallery - Естественные науки - Математика - Технология
|
Вес и взвешивание.Определение "Вес и взвешивание." в словаре Брокгауза и ЕфронаВес и взвешивание. — Изложение этой статьи разделено на следующие части: 1) вес, удельный вес, плотность; 2) взвешивание, точное взвешивание, общие приемы, частные способы; 3) взвешивание в воде, или гидростатическое, для определения плотности твердых и жидких тел; 4) разновес, или гири для взвешивания. 1) Bсе тела притягиваются друг к другу и, следовательно, к Земле; тела, находящиеся над поверхностью Земли и ничем не поддерживаемые, падают на нее, а поддерживаемые — производят давление на подставку. В первом случае сила притяжения измеряется ускорением при падении тел, во втором — весом их; скорость падения и ускорение тел не зависят от величины тел, хотя в целом теле содержится вдвое более вещества, чем в его половине, и масса целого тела вдвое более массы его половины. Нет средств измерять непосредственно количество вещества, содержащегося в телах, тем не менее, нельзя сомневаться, что эти количества в телах одного состава пропорциональны массам и весам тел (в одном и том же месте Земли). В кубическом дециметре меди содержится вещества в 1000 раз больше, чем в одном куб. см, а также масса и вес первого в 1000 раз больше массы и веса второго. Кубич. см платины имеет вес, одинаковый с весом 2,42 куб. см меди; на этом основании допускают, что и количества вещества, содержащегося в куб. см платины и в 2,42 кубич. см меди, одинаковы (см. ниже — плотность). Практическая цель взвешивания заключается в сравнении количеств вещества, содержащегося в разных телах. Однако вес тела непостоянен, будучи тем менее, чем на большем расстоянии от Земли (от ее центра) тело находится; вес на полюсе и вообще в полярных странах более, чем на экваторе, как по причине сжатости Земли при полюсах и потому большей близости тел к центру Земли, так и по причине центробежной силы, противодействующей земному притяжению на экваторе сильнее, чем в полярных странах. Взвешивание на обыкновенных весах с коромыслом не может служить для доказательства этой изменяемости веса, потому что вес гирь изменяется в одинаковом отношении с весом тел. Только пользуясь пружинными весами, если б они могли быть достаточно чувствительными при большой нагрузке, можно было бы в этом убедиться; но другая мера притяжения — ускорение — подлежит более удобному измерению; качаниями маятника (см. Притяжение, Маятник) доказано, что земное притяжение (а следовательно, и вес) в разных местах Земли неодинаково. Если установить весы на башне, и уравновесить какое-нибудь тело гирями, а потом, опустив его на проволоке в нижний этаж башни, снова уравновесить гирями, положенными на другой чашке весов, находящихся наверху, то окажется, что вес тела меньше внизу (хотя и немного), чем наверху (опыт Жолли в 1881 г.).
Итак, вес тел есть непостоянная величина, даже на поверхности Земли, но постоянна масса тела; ускорение подвержено тем же изменениям, как и вес. Обозначая буквою р вес тела, буквою g — ускорение и буквою m — массу тела, имеем следующее соотношение между этими величинами:
Удельный и относительный вес и плотность суть величины, связанные с весом тел. Определения этих терминов не всегда однообразны: можно принять следующие. Удельный вес есть истинный вес единицы объема тела, имеющего температуру 0°. Температура упоминается потому, что от нее зависит количество вещества, помещающегося в определенном объеме. Итак, удельный вес выражается именованным числом. Плотность тела зависит от количества вещества, помещающегося в определенном объеме. Так, в кубическом дециметре вмещается некоторое количество воздуха, имеющего упругость 760 мм, а при двойном давлении или упругости, но при той же температуре, это количество удвоится. Если этот воздух охладить, то он, сжимаясь, дает доступ новому количеству воздуха, так что все количество вещества в прежнем объеме увеличится; от нагревания же воздуха, при свободном его выходе, оно уменьшилось бы. Понятия об этих изменениях получаются посредством взвешивания. Сравнение количеств вещества платины и меди, вмещающихся в 1 куб. см при 0°, менее ясно, так как вещества разнородны. Если держаться мнения, что атомы всех тел одинаковы весом и объемом, то, если бы они находились в состоянии покоя, все вещества были бы тождественны (Грэм — Graham, 1866). Но каждый атом обладает известным движением, которым обуславливается занимаемый им объем; чем быстрее это движение, тем значительнее нужный для атома объем. Поэтому вещества отличаются одни от других только плотностью. С такой точки зрения можно говорить о различном количестве вещества в куб. см платины и меди, и потому различие в весе их будет указывать на различное уплотнение вещества в платине и меди. Плотность тел будет обратно пропорциональна объемам, нужным для основных атомов и пропорциональна их числу, следовательно, плотность тел пропорциональна весу тел при одинаковых объемах и других второстепенных условиях. Вес одного куб. см воды при наибольшем ее сжатии (4°С) равен 1 грамму, а весь 1 куб. см ртути при 0° равен 13,6 грамма; эти числа условным образом выражают количества вещества и, следовательно, плотность воды и ртути. Плотность ртути относительно воды выражается отвлеченным числом 13,6, а плотность воды будет 1. Можно еще принять, что именованные числа выражают абсолютные, а отвлеченные — относительные плотности; во всяком случае по одинаковости чисел для них нет опасности от смешения обоих понятий. Это удобство исчезает при переходе к другой системе мер. Например, один куб. дюйм воды наибольшей плотности весит 3 зол. 66 долей, а куб. дюйм ртути — 50 зол. 23 доли: второе число более первого в 13,6 раза. Относительная плотность при всяких мерах, конечно, выражается одним и тем же числом, но абсолютная плотность — различными. То же самое можно сказать про относительный вес и удельный вес.
Из вышесказанного видно, что хотя понятие плотности отличается от понятия веса, так как последний служит только измерителем плотности, но числа для них одни и те же в метрической системе. Вследствие этого безразлично употреблено терминов относительный и удельный вес. и плотность; смешения понятий при этом не произойдет, если придерживаться метрической системы мер, так как из дела всегда видно, идет ли речь о плотности, как о свойстве, измеряемом числом, или же об отношении веса тел, как об отвлеченном числе, нужном для сравнения. Впрочем, понятие о плотности не исчерпывается сказанным. Обращаясь теперь к рассмотрению приемов точного взвешивания, следует указать степень важности разных предосторожностей и поправок. Весы должны быть установлены прочно, на полочке, прикрепленной к стене комнаты, если пол ее деревянный или вообще такой, что через него передаются толчки от движения людей. Для устранения потоков воздуха, мешающих правильности колебаний коромысла, весы покрываются ящиком — футляром со стеклами; во время заканчивания взвешивания ящик должен быть закрыт. Но этой предосторожности мало для самых точных взвешиваний: дыхание наблюдателя, лучеиспускание его тела, близость газовой горелки — все это может вызвать течения воздуха в ящике или несимметричное и неравномерное изменение коромысла. Если чувствительность весов есть 1/10000000 (см. Весы), то изменение длины одного плеча на такую же часть будет сопровождаться ошибкой во взвешивании, равной чувствительности. Для латунного коромысла такое удлинение произойдет при нагревании на 1/18°, для более чувствительных весов разность температур обоих плеч коромысла в 1/100° могла бы произвести при взвешивании ошибку около 1/5000000 взвешиваемого груза; при взвешивании одного килограмма ошибка составила бы около 1/5 мг. В международном бюро мер и весов в Париже весы установлены на особых фундаментах в зале, которой стены поддерживаются при постоянной температуре, наложение малых гирек совершается посредством особых механизмов; взвешиваемое тело кладется на весы и приблизительно уравновешивается за сутки до окончательного взвешивания; положение равновесия наблюдается с помощью зрительных труб с расстояния 4 метров. Взвешивание производят следующими способами: а) положив взвешив. тело на одной чашке весов, кладут гири на другую до приведения коромысла в горизонтальное положение; б) производят два взвешивания: первое как сейчас было сказано и второе — после перекладки взвешиваемого тела на ту чашку, где в первый раз были разновески и уравновешивания гирями на той чашке, где прежде было тело (это способ Гаусса); в) уравновешивают тело не разновесками, но тарою, т. е. какими-нибудь грузами, металлическими обрезками, опилками, и потом, сняв тело, уравновешивают тару разновесками (это способ Борды); г) на одну чашку весов кладут наибольшее количество гирь, выдерживаемое весами без повреждения, и уравновешивают ее тарою на другой чашке; затем кладут взвешиваемое тело (весящее менее наибольшего груза) на чашку, где гири и оставляют разновесок столько, сколько В. нужно для приведения коромысла к равновесию. Это способ взвешив. при постоянной нагрузке.
Во всех этих способах, описанных в частности ниже, главные приемы собственно приведения в равновесие остаются одни и те же. Положив тело на одну чашку весов при поднятом арретире (см. Весы), накладывают гири (сперва крупные) на другую, для чего захватывают их щипчиками или особыми вилками; затем, опустив арретир, смотрят, много ли или мало гирь положено, и сближают пределы систематическими пробами, кончая сантиграммами. Тогда уже опускают стеклянную стенку ящика и накладывают на коромысло "ездока" (фиг. 13) в 1 сантиграмм.
Когда стрелка станет делать приблизительно равные размахи в обе стороны от средней черты шкалы, не превышающие одного деления, можно считать, что равновесие достигнуто. Такой прием взвешивания при хороших весах достаточен, когда можно довольствоваться точностью в один миллиграмм. Если же требуется закончить взвешивание со всей точностью, допускаемой данными весами, то наблюдают качания стрелки для вычисления из них положения, которое она примет при равновесии и остановке качаний. Положим, что деления шкалы пронумерованы слева направо; пусть крайнее положение стрелки налево будет против a1 делений, крайнее правое на а 2, и опять налево а 3. По правилу Гаусса, положение равновесия стрелки на шкале а вычислится из следующей формулы:
При выводе этой формулы отброшены малые величины высшего порядка. Если обозначить буквою п отношение величин двух последовательных, понемногу убывающих размахов а 2 и а 1 стрелки, то ошибка при вычислении по этой формуле будет только
Было упомянуто, что вес тела в воздyxе изменяется от многих причин; поэтому после точного взвешивания в воздухе надо вычислить вес тела в пустом пространстве. Означая буквами Р и D истинный вес и плотность взвешиваемого тела, а через р и d — истинный вес и плотность гирь, уравновешивающих это тело, и через q — вес куб. см воздуха, в котором произведено взвешивание, можно выразить равенство обоих давлений, предполагая, что плечи коромысла равны, следующею формулою:
Влияние потери веса гирь в воздухе на результат взвешивания вполне исключается при определении отношения весов двух тел, если воздух не изменился во время взвешивания. Положим, что для двух взвешиваемых тел, имеющих плотности D и Dl и уравновешенных гирями р и р 1, составлены выражения:
b) Способ Гаусса заключается в двух взвешиваниях: 1) тело находится на левой чашке, гири — на правой, и 2) тело находится на правой чашке, а гири — на левой. Если длину левого плеча обозначим через l1 a длину правого через l2, вес гирь на правой чашке через р 2, а на левой — через р 1, то имеем равенства статических моментов: , или приблиз. l1/l2 = 1 + [(p2 — p1)/(2p1)]. c) Способ Борды совершенно нагляден: тело уравновешивают тарою вместо гирь, затем снимают его и заменяют гирями; значит, тело и гири действуют поочередно на одно и то же плечо. Вес тела, очевидно, равен весу гирь в воздухе; отсюда вычислением находят вес тела в пустом пространстве. Способы Борды и Гаусса суть способы двойного взвешивания, хотя обыкновенно этим названием обозначают способ Борды. d) Взвешивание всегда на одном плече при постоянной нагрузке коромысла имеет достоинства двойного взвешивания и сопровождается одною и тою же постоянной чувствительностью весов, которая, впрочем, есть наименьшая из всех возможных для этого коромысла, потому что относится к наибольшей нагрузке коромысла. О таком взвешивании упоминается в иллюстрированном каталоге физических приборов Саллерона и, кажется, еще ранее Бокгольцем, устроившим даже особенные весы для этой цели. В сочинении Д. И. Менделеева "Об упругости газов" (1875 г.) изложены доводы в пользу этого способа.
3) Взвешивание гидростатическое, или взвешивание тел в воде и вообще в каких-нибудь жидкостях, служит для определения плотности или относительного веса твердых и жидких тел. Относительный вес выражается числом, равным отношению веса тела к весу воды равного объема. Если тело опущено в воду, то его вес кажущимся образом уменьшается на величину веса воды равного объема (Архимедов закон); вследствие этого разность веса тела в воздухе (точнее — в пустоте) и в воде есть вес воды равного с погруженным телом объема. Разделяя первый вес на второй, получим число, измеряющее относительный вес тела. Полученные таким образом числа не будут достаточно точны для научных целей; необходимо еще делать вычисления, принимая во внимание истинный вес тела, полагая, что вытесненный объем воды равен объему тела при 0°, и что температура воды есть 4°С. — Для взвешивания в воде необходимо бывает повесить тело на проволоку или поместить его в подвешенный сосуд, если оно в порошке или, если оно легче воды и поэтому всплывает. Назовем через q' вес гирек, уравновешивающих в воздухе эту проволоку или сосуд, на весах с плечами l и l'. Пусть объем тела, данного для исследования, будет V куб. см; искомую плотность его, при температуре опыта t°, отнесенную к воде при температуре 4°, обозначим через Х t, а плотность воды при той же температуре — Δ t. Уравновесив в воздухе подвешенное на одной стороне В. тело с проволоками-гирями Q на другой стороне, получим уравнение:
где q вес куб. сантиметра воздуха, a d плотность гирь. Подставляют под весы сосуд с водою так, чтобы в нее погрузилось все тело и часть поддерживающей его проволоки и удаляют приставшие пузырьки воздуха (что при простых и порошкообразных телах иногда бывает очень трудно и требует предварительного кипячения или помещения в разреженном воздухе). По диаметру и длине погруженной части проволоки вычисляют ее объем: каждый куб. миллиметр будет соответствовать потере в один миллиграмм; обозначим эту величину буквою q". Уравновешивая погруженное тело с проволокою-гирями Q', получим новое уравнение;
Отношение плеч коромысла само собою исключается, другие же сокращения мы вправе сделать только в предположении, что при всех взвешиваниях вес куб. см воздуха остается тот же. Для определения плотности жидкостей употребляется несколько способов. По одному из них надо определить вес какого-нибудь твердого тела в воздухе, в воде и в испытываемой жидкости. В этом случае берут обыкновенно стеклянный запаянный шарик, нагруженный налитою ртутью настолько, чтобы он тонул. Шарик подвешен на платиновой проволочке; пользуясь теми же обозначениями, что и раньше, получим.
Оба уравнения III и VII выражают плотность тела при температуре опыта, отнесенную, однако, к воде при ее наибольшей плотности (4°С). Когда известен коэффициент расширения тела k, нетрудно вычислить его плотность при температуре 0°. Действительно, масса тела, равная произведению его объема на плотность, останется постоянною, поэтому:
4) Разновес, или гири для взвешивания. Точность взвешивания вполне зависит от правильности употребленного разновеса. В настоящее время лучшие механики, изготовляющие разновесы, например Рупрехт в Вене, имеют у себя наборы гирь, тщательно сверенные с нормальными, представляющими означенные на них веса в пустоте. С этих гирь они делают копии высшего порядка точности, производя взвешиваниe в воздухе и определяя плотность новых гирь, чтобы ввести поправку на разность вытесненного воздуха. Обыкновенные же латунные аналитические разновесы копируются в предположении, что их плотность равна плотности нормальных. Свежеприготовленные наборы аналитических разновесов бывают обыкновенно вполне достаточно выверены хорошими механиками, но во время употребления выверка легко портится; гирьки грязнятся, щипчики их царапают, а в химических лабораториях латунь часто окисляется. Ржавчину эту лучше не стирать, как заметил Мор: она поглотила только газ, а, стирая ее, мы удалим и металл, чем еще больше увеличим ошибку, только в обратную сторону. Поэтому не надо забывать проверять старые наборы разновесок и пользоваться полученными проверкою таблицами их поправок. В каталогах физических приборов некоторых механиков помещены недорогие "нормальные" наборы разновесов: они предназначаются для поверки аптекарских торговых гирь и снабжены официальными клеймами, но выверены с меньшею точностью, чем аналитические тех же фирм. Так, французский законодатель допускает погрешность 1,5 грамма для гири в 20 килограммов (0,000075 часть), в 0,15 г для 1 кг (0,00015) и в 0,002 г для одного грамма. Размеры и форму гирь он тоже определяет законом, так что некоторые гири надо делать пустотелыми; при выверке добавляют в пустоту сколько следует материала, ввинчивают головку и закрепляют ее медным шпеньком, на котором мастер должен поставить свое клеймо. У нас ("Устав Торговый", раздел 4, 1845) довольствуются меньшею точностью: для гирь от полуфунта и выше допускается ошибка, не превышающая одну восьмую золотника на каждый фунт, т. е. 0,0013 всей величины, но для малых гирь пропорциональная ошибка больше и доходит до одной доли на золотник, т. е. 0,014. Гири, весы и другие торговые меры дозволяется изготовлять всякому мастеру, получившему на это дозволение от губернского начальства и свидетельство на гербовой бумаге в 90 коп. сер. Выверка и клеймение вновь приготовленных мер производится в казенной палате, а в больших городах — в городской думе (см. еще Весы).
Статья про "Вес и взвешивание." в словаре Брокгауза и Ефрона была прочитана 3681 раз |
TOP 15
|
|||||||