БНБ "БРОКГАУЗ И ЕФРОН" (121188) - Photogallery - Естественные науки - Математика - Технология
|
Арифметика, наукаОпределение "Арифметика, наука" в словаре Брокгауза и Ефрона
Арифметика, наука (от греч. слов άριθμος - число и τέχνη - искусство) - часть математики, которая занимается изучением свойств определенных конкретных величин; в более тесном смысле А. есть наука о числах, выраженных цифрами, и занимается действиями над числами. А. можно делить на низшую и высшую, понимая под первой четыре основных действия с целыми и дробными числами и их практические применения, учение о пропорциях, возвышение в степень, извлечение квадратных и кубичных корней и решение численных уравнений, между тем как высшая А. занимается исследованием свойств чисел вообще, деления целых чисел на части, непрерывных дробей и пр. - А. находится в тесной, неразрывной связи с алгеброй, которую Ньютон называл "Общей арифметикой"; вот почему действия - возвышение в степени, извлечение корней и решения численных уравнений, относящиеся собственно к алгебре, - должны войти в состав А., рассматривая последнюю как техническую часть алгебры. Рассматривая возвышение в степень как частный случай умножения и принимая во внимание, что при извлечении корней и решении численных уравнений мы производим какое-либо из четырех основных действий, некоторые математики силились ограничить А. лишь основными действиями, а именно: сложения, вычитания, умножения и деления, но подобное ограничение несправедливо, так как три второстепенных действия А. производятся в известном порядке, который составляет существенную часть каждого действия. Многие писатели затруднялись разграничением алгебры от А., так как первая занимается теми же действиями, что и вторая. Приняв, однако, в соображение, что алгебра доказывает те правила, которыми А. руководствуется, и что алгебра имеет предметом преобразование действий одних в другие так, чтобы А. оставалось лишь исполнение самых простейших действий, можно, таким образом, утверждать, что алгебра есть обобщенная А., которая, в свою очередь, есть наука о числах и свойствах вполне определенных величин. Одной из самых интересных страниц истории А. должно признать вопрос о счислении. Сведения, собранные различными исследователями этого важного вопроса, сводятся к тому заключению, что почти у всех народов спокон веков была принята система десятеричного счисления. Джордж Пикок (Peacock), проф. Кембриджского универ., приводит в своей статье об А. для "Encyclopedia metropolitana of pure mathematics" прекрасные данные о системах счисления даже у диких племен, и там мы встречаем десять различных слов у каждого наречия, которые служат основанием счисления. Объяснения подобного совпадения систем должно искать в факте наличности десяти пальцев у человека, который на первых ступенях своего развития естественно прибегал к своим пальцам для выражения числа. Письменное счисление десятью цифрами получило свое начало, как надо полагать, на Востоке, а именно у индусов, которые передали свое искусство для усовершенствования арабам, изучившим творения греков по "числительному искусству". Вполне достоверно на основании дошедших до нас памятников, что арабы еще в конце X века совершенно понимали употребление 1 0 цифр и не могли не сообщить своего знания всем народам, с которыми имели сношения. В начале XI века мавры, овладевшие Испанией, прилежно занимались там математикой и особенно "Логистикой" греков и послужили, таким образом, впоследствии такими же наставниками по математике для христианского мира, как египтяне для греков. С появлением цифр в переводе Птоломеева "Алмагеста", изданном в Испании в 1136 г., индийское (так назыв. ныне арабское) знакоположение делается употребительнейшим между учеными. В общежитии, однако, римские цифры господствовали до половины XV в., когда наступает некоторым образом эпоха смешения римских и арабских знаков; мало-помалу римские знаки уступают место арабским среди ученых, благодаря которым арабские и делаются всеобщим достоянием. Понятно, что весьма трудно проследить весь процесс преобразования нашего счисления; прибавим поэтому только, что А. достигла настоящей степени совершенства лишь благодаря гениальным трудам корифеев математики последних двух столетий; достаточно упомянуть имена Ньютона, Лейбница, Валлиса, Эйлера и др., чтобы представить себе, сколько трудов было потрачено, пока А. достигла той степени изящества и простоты, на которую она возведена в настоящее время.
Небезынтересно будет упомянуть, как постепенно распространялась А. в нашем отечестве. Карамзин полагает ("История Госуд. Рос.", т. X, стр. 259), что первая русская А. появилась в исходе XVI ст., под следующим названием: "Книга, рекома по гречески Арифметика, по-немецки Алгорисма, а по-русски - Цифирная счетная мудрость". В предисловии к этому сочинению, между прочим, сказано: "Сир, сын Амноров, муж мудр бысть; сий же написа численную сию философию финическими письмены, яко же он мудрый глаголет, яко безплотна сущи начала, телеса же преминующая. Без сея книги ни един философ, ни дохтур не может быти; а хто сию мудрость знает, может быть у государя в великой чти и в жалованьи; по сей мудрости гости по государствам торгуют и во всяких товарех и в торгех силу знают, и во всяких весех и в мерах и в земном верстании и в морском течении зело искусны и счет из всякого числа перечню знают". Это витиеватое предисловие наглядно показывает, что ничего систематического нельзя ожидать от подобного арифметического курса. Действительно, мы тут имеем дело с обрывочными сведениями о 4-х первоначальных действиях, трактованных еще по древнему методу греков; при этом мы находим также римские цифры, а не арабские. С арабскими цифрами А. была впервые сочинена и опубликована у нас учителем математики на Сухаревой башне (в Москве) Леонтием Магницким, в 1703 г. По мнению другого исследователя русской старины, Голикова (см. "Дополнения к деяниям", кн. V, стр. 78), Петр Великий привез в 1698 г. из Лондона многих ученых морских офицеров, в числе коих был Фергарсон, который будто ввел впервые в России арабские цифры. Бесспорно, что со времени великого преобразователя России А. наравне с другими науками получает свое направление с Запада и совершенствуется сообразно состоянию А. у наших соседей. Благодаря же трудам знаменитого Эйлера, бывшего академиком нашей академии наук, и целой плеяды славных его учеников А. вместе с алгеброй получают самостоятельное направление и независимо от иностранных математиков движутся быстрыми шагами вперед, дойдя до той формы, которую А. сохранила до настоящего времени. Мы ограничились лишь кратким обзором истории А., отсылая читателя за подробностями к соответствующим статьям, составляющим содержание А., и к специальным сочинениям, перечисленным нами ниже (см. статьи: Дроби, Тройное правило, Проценты, Цепное правило, Товарищества и др.).
Статья про "Арифметика, наука" в словаре Брокгауза и Ефрона была прочитана 1461 раз |
TOP 15
|
|||||||